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ABSTRACT
The three-dimensional structure of solar active region NOAA 7986 observed on 1996 August 30 with

the Extreme-Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory
(SOHO) is analyzed. We develop a new method of dynamic stereoscopy to reconstruct the three-
dimensional geometry of dynamically changing loops, which allows us to determine the orientation of
the mean loop plane with respect to the line of sight, a prerequisite to correct properly for projection
e†ects in three-dimensional loop models. With this method and the Ðlter-ratio technique applied to EIT
171 and 195 images we determine the three-dimensional coordinates [x(s), y(s), z(s)], the loop widthA�
w(s), the electron density and the electron temperature as a function of the loop length s forn

e
(s), T

e
(s)

30 loop segments. Fitting the loop densities with an exponential density model we Ðnd that then
e
(h)

mean of inferred scale height temperatures, MK, matches closely that of EIT Ðlter-ratioT
e
j \ 1.22 ^ 0.23

temperatures, MK. We conclude that these cool and rather large-scale loops (withT
e
EIT \ 1.21 ^ 0.06

heights of h B 30È225 Mm) are in hydrostatic equilibrium. Most of the loops show no signiÐcant thick-
ness variation w(s), but we measure for most of them a positive temperature gradient (dT /ds [ 0) across
the Ðrst scale height above the footpoint. Based on these temperature gradients we Ðnd that the conduc-
tive loss rate is about 2 orders of magnitude smaller than the radiative loss rate, which is in strong
contrast to hot active region loops seen in soft X-rays. We infer a mean radiative loss time of qrad B 40
minutes at the loop base. Because thermal conduction is negligible in these cool EUV loops, they are not
in steady state, and radiative loss has entirely to be balanced by the heating function. A statistical
heating model with recurrent heating events distributed along the entire loop can explain the observed
temperature gradients if the mean recurrence time is minutes. We computed also a potential Ðeld[10
model (from SOHO/MDI magnetograms) and found a reasonable match with the traced EIT loops. With
the magnetic Ðeld model we determined also the height dependence of the magnetic Ðeld B(h), the
plasma parameter b(h), and the velocity No correlation was found between the heating rateAlfve� n vA(h).
requirement and the magnetic Ðeld at the loop footpoints.E

H0 Bfoot
Subject headings : Sun: activity È Sun: corona È Sun: UV radiation È techniques : image processing

1. INTRODUCTION

The evolution of coronal plasma loops, beginning from
the well-kept secret of the elusive heating mechanism, to the
somewhat better understood conductive and radiative
cooling processes, and the various transitions from steady
state to nonequilibrium states, still represents a key
problem of coronal plasma physics. Because the average

1 Current address : Lockheed-Martin ATC, Solar and Astrophysics
Laboratory, Department H1-12, Building 252, 3251 Hanover Street, Palo
Alto, CA 94304 ; aschwanden=sag.lmsal.com.

temperature of the solar corona ranges around T
e
B 1.5

MK, this temperature seems to reÑect the most likely steady
state condition of coronal structures, demarcating at the
same time a watershed where cooling and heating processes
start to lose equilibrium. It is therefore a physically mean-
ingful choice to distinguish between cool2 and hot loops

2 The temperature range of MK that we denote as cool here isT
e
[ 1.5

sometimes also termed intermediate temperatures (e.g., Brown 1996),
whereas loops with temperatures of K are referred to as coolT

e
[ 105

loops (e.g., Martens & Kuin 1982).

842



THREE-DIMENSIONAL ANALYSIS OF SOLAR ACTIVE REGIONS 843

with respect to this maximum likelihood temperature T
e
B

1.5 MK, which also separates roughly the line-formation
temperatures in the EUV/XUV and soft X-ray (SXR) wave-
length regimes. Coronal loops in EUV/XUV wavelengths
could only be studied with few instruments, mainly from the
spacecraft missions Skylab, SOHO, T ransition Region And
Coronal Explorer (T RACE), and from a few short-duration
rocket Ñights (e.g., American Science and Engineering
[AS&E], High-Resolution Telescope and Spectrograph
[HRTS], or Solar EUV Rocket Telescope and Spectro-
graph [SERTS]). The scarce EUV observations before the
launch of SOHO provided little systematic information on
the physical structure of cooler active region loops in the
temperature regime of MK, as opposed to theT

e
[ 1.5

much more frequently studied hotter loops MK)(T
e
Z 1.5

in SXR (with OSO 8, P78-1, Hinotori, SMM/XRP, Y ohkoh/
SXT, Coronas, etc.). A number of statistical studies exist on
hot active region loops observed in SXRs (e.g., Pallavicini,
Serio, & Vaiana 1977 ; Rosner, Tucker, & Vaiana 1978 ;
Cheng 1980 ; Porter & Klimchuk 1995 ; Klimchuk & Gary
1995 ; Kano & Tsuneta 1995, 1996), but there are no compa-
rable statistics available on cooler active region loops
observed at temperatures of MK in EUV.T

e
\ 1.0È1.5

Moreover, not much e†ort has been invested in the three-
dimensional reconstruction of coronal loops at any wave-
length so far (although the technology is ready ; see, e.g.,
Gary 1997). This work represents a Ðrst comprehensive sta-
tistical study on physical parameters of cool active region
loops in the MK temperature range, measuredT

e
\ 1.0È1.5

with unprecedented accuracy using a newly developed
three-dimensional reconstruction method called dynamic
stereoscopy.

Let us quickly review some highlights of earlier work on
EUV loops in the MK temperature range. AT

e
B 1.0È1.5

comprehensive account on literature before 1991 can be
found in Bray et al. (1991). The Skylab XUV spectrohelio-
graph provided images with 2AÈ3A resolution at wave-
lengths of 180È630 including the Mg IX line with aA� ,
formation temperature of MK. Dere (1982)T

e
\ 0.9

analyzed such XUV loops and found (1) that they are close
to hydrostatic equilibrium (within the uncertainties of the
unknown three-dimensional geometry) and (2) that hot

MK) loops do not have a cool core structure as(T
e
[ 1

suggested by Foukal (1975). Sheeley (1980) studied the tem-
poral variability of EUV loops and found lifetimes of B1.5
hr for 1 MK loops, somewhat longer than those of 0.5 MK
loops. This lifetime of 1 MK loops, estimated by Sheeley
from time-lapse movies, is actually close to the value we
infer for the radiative cooling time from SOHO/EIT data.
Observations with SERTS revealed that the brightest struc-
tures seen in Mg IX are not spatially coincident with hotter
coronal loops seen in SXR but are rooted in chromospheric
He II features and thus seem to trace out cooler coronal
loops with apex temperatures of MK (Brosius et al.T

e
[ 1

1997). The existence of numerous cooler loops has also been
postulated from the observed discrepancy between SXR-
inferred temperatures of active regions and simultaneous
radio brightness temperature measurements because the
former include only the contributions from hot loops,
whereas the latter are sensitive to the combined free-free
opacity of both hot and cool loops (Webb et al. 1987 ; Nitta
et al. 1991 ; Schmelz et al. 1992, 1994 ; Brosius et al. 1992 ;
Klimchuk & Gary 1995 ; Vourlidas & Bastian 1996). The
most recent work on EUV loops comes from SOHO/EIT

(Neupert et al. 1998 ; Aschwanden et al. 1998a, 1998b) and
SOHO/CDS (Fludra et al. 1997 ; Brekke et al. 1997).
Neupert et al. (1998) analyzed a long-lived loop structure
and an open-Ðeld radial feature and found (1) that they are
close to hydrostatic equilibrium (within the uncertainties of
the unknown three-dimensional geometry), and (2) that
radiative energy loss strongly dominates conductive energy
loss at these loop temperatures of MK,T

e
\ 1.0È1.5

requiring a heating function that scales with the squared
density, The temporal variability and lifetime ofE

H
P n

e
2.

EUV loops can now best be studied from SOHO/EIT
movies (Newmark et al. 1997).

What progress can we expect from a new analysis of
active region loops, using the most recent EUV data avail-
able from SOHO/EIT? To accomplish sensible tests of theo-
retical models on heating and cooling processes, accurate
physical parameters from resolved single loops are needed.
However, most of the previous literature deals with line-of-
sight averaged quantities without discriminating between
single loops. For a proper determination of physical param-
eters from single active region loops, a number of analysis
problems have to be overcome.

1. Geometric loop deÐnition
2. IdentiÐcation and tracing of loops in images
3. Disentangling of nested loops
4. Separation of overlying or closely spaced loops
5. Discrimination of multiple loops along the line of sight
6. Three-dimensional reconstruction of loop geometry

and deprojection
7. Temperature discrimination along the line of sight
8. Reliable temperature and emission measure determi-

nation.

Most of these problems have not been treated in a sys-
tematic way in previous studies. Here we present the results
of a new approach, making use of the principle of dynamic
stereoscopy to reconstruct the three-dimensional orienta-
tion of loops, which provides a reliable method to obtain
more accurate physical parameters as a function of the loop
length, properly corrected for line-of-sight related projec-
tion e†ects. The enhanced accuracy is expected to allow for
more rigorous tests of theoretical loop models.

In ° 2 we describe the stereoscopic data analysis of 30
loops observed with SOHO/EIT at a wavelength band cen-
tered around Fe IX, Fe X at 171 In ° 3 we apply physicalA� .
loop models to the data and investigate loop scaling laws. A
summary and conclusions are given in ° 4.

2. STEREOSCOPIC DATA ANALYSIS

2.1. Data Set
The investigated active region is a long-lived coronal

structure that was present during several solar rotations,
from its apparition in 1996 July until its disappearance in
1996 September (Hudson et al. 1998 ; Harvey & Hudson
1998), numbered as NOAA 7978, 7981, 7986 during con-
secutive rotations. We concentrate here on the central meri-
dian transit on 1996 August 30, when the dipolar magnetic
Ðeld structure o†ered the most favorable perspective to dis-
entangle the ““ jungle ÏÏ of nested loops.

An Fe IX/Fe X image recorded with SOHO/EIT
et al. 1995) at a wavelength of 171 on(Delaboudinière A�

1996 August 30, 0020 :14 UT is shown in Figure 1 (top). For
stereoscopic correlations we will also use EIT images from
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FIG. 1.ÈSOHO/EIT Fe IX/Fe X image of active region AR 7986, recorded on 1996 August 30, 0020 :14 UT, at a wavelength of 171 sensitive in theA� ,
temperature range of MK (top). The gray scales of the image is scaled logarithmically in Ñux, the contours correspond to increments of 100 DNT

e
\ 1.0È1.5

(data numbers). The heliographic grid has a spacing of 5¡. The Ðltered image (bottom) was created by subtracting a smoothed image (using a boxcar of 3 ] 3
pixels) from the original image, in order to enhance the loop Ðne structure.
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the previous (1996 August 29, 0015 :15 UT) and following
day (1996 August 31, 0010 :14 UT). The multiloop structure
of this active region is clearly visible in the high-pass Ðltered
rendering shown in Figure 1 (bottom). The Ðltered image is
simply created by subtracting a smoothed image (with a
boxcar average over 3 ] 3 pixels) from the original image.
The original (full disk) image has a pixel size of and2A.616
was recorded with an exposure time of 3.5 s. The absolute
coordinate system of the full-disk image was established by
Ðtting a circle to the solar limb (at 30 limb positions). The
accuracy of the so-deÐned Sun center position is estimated
to be pixel/301@2 B 0.2 pixel. The o†set of the Sunp

x
B 1

center position provided (by an automatic limb-(x0@ , y0@ )
Ðtting routine) in the FITS header of the archive EIT image
with respect to our value is found to be(x0, y0) (x0@ [ x0) \
]0.5 and pixels. For the solar radius we(y0@ [ y0) \ [3.9
Ðnd a di†erence of pixels. Part of the dis-(r0@ [ r0) \ [1.2
crepancy probably results from the automatic limb-Ðtting
routine that can fail in the presence of active regions near
the limb. The discrepancy in the solar radius has a more
fundamental reason related to the problem of deÐning the
radius of a fuzzy EUV limb, which is moreover found to be
asymmetric in equator and polar direction (Zhang, White,
& Kundu 1998). The EIT pixel size of is derived*x \ 2A.616
for a spacecraft distance of d \ 0.01 AU from Earth and
based on the assumption that the solar limb seen in EIT

corresponds to the top of the chromosphere (h \171 A�
2500 km).

2.2. Dynamic Stereoscopy Method
In order to analyze the three-dimensional structure of

coronal loops we develop a new technique we might call
dynamic stereoscopy, as opposed to static stereoscopy,
where the solar rotation is used to vary the aspect angle of
otherwise static structures (e.g., Loughhead, Chen, & Wang
1984 ; Berton & Sakurai 1985 ; Aschwanden & Bastian
1994a, 1994b ; Davila 1994 ; Aschwanden et al. 1995 ; Asch-
wanden 1995). The innovative feature of this new technique
is that spatial structures, e.g., coronal loops, are allowed to
evolve dynamically during the time interval over which the
stereoscopic correlation is performed.

In the dynamic stereoscopy method we take advantage of
the fact that the global magnetic Ðeld is slowly evolving (say
during a day) compared with heating and cooling processes
in coronal loops. Consequently, the coronal magnetic Ðeld
B(x, t) can be considered as invariant over short timescales,
whereas the conÐned plasma can Ñow through ““ magnetic
conduits ÏÏ in a highly dynamic manner. If a speciÐc coronal
Ñux tube following a Ðeld line B(x, is loaded with brightt1)
plasma at time the same Ñux tube may be cooled downt1,
at time (say a few hours later) and invisible at the samet2observed wavelength, whereas heating may occur in an
adjacent Ñux tube B(x ] *x, which was dark at timet2), t1and appears now bright at time For adjacent Ñux tubes,t2.
the two Ðeld lines B(x) and B(x ] *x) will run almost paral-
lel, a property we will exploit in our dynamic stereoscopy
method. Our method is applicable to coronal structures
that meet the following two conditions.

1. The global magnetic vector Ðeld B(x, t) is static (or
slowly varying) during the time interval over which stereo-
scopic correlations are performed (typically 1 day). The
magnetic Ðeld can be traced out by optically thin emission
(e.g., in SXR or EUV wavelengths).

2. At least one footpoint of an observed coronal loop is

identiÐable, which can be used as a reference level of the
altitude. For EUV emission we assume that the altitude of a
loop footpoint is located in the lower corona above the
chromosphere, at an altitude of km above thehfoot B 2500
photosphere.

We outline brieÑy the numerical procedure of our imple-
mentation of the dynamic stereoscopy method, and the
mathematical coordinate transformations are given in
Appendix A. The projected geometry of a loop segment in
an image at time is traced out by a series of image coordi-t1nates i \ 1, . . . , n, starting at footpoint position(x

i
, y

i
),

assumed to be anchored at height (Fig. 2). Two(x1, y1), hfootadditional variables to characterize the three-dimensional
geometry of the loop segment are the azimuth angle a of the
footpoint baseline and the inclination angle Ë of the mean
loop plane (intersecting the footpoint baseline ; see Fig. 2).
The procedure of stereoscopic correlation (illustrated in
Fig. 3) includes the following steps.

1. Measuring of positions i \ 1, by tracing(x
i
, y

i
), . . . , n

ja loop segment in an image recorded at time startingt1,
with the primary footpoint at (x1, y1).

2. Estimating the position of the secondary footpoint
to obtain the azimuth angle a of the footpoint(x

F2
, y

F2
)

baseline. If the full length of the loop can be traced, the
secondary footpoint is just given by the last point x

n
, y

n
,

and the tangent of the azimuth angle a corresponds to the
ratio of the latitude and longitude di†erence(b

F2
[ b

F1
)

of the two footpoints, i.e.,(l
F2

[ l
F1

)

tan a \ (b
F2

[ b
F1

)
(l
F2

[ l
F1

)
. (1)

However, most of the loops analyzed here can only be reli-
ably traced over 1 density scale height, whereas the apex
segment is generally so weak that some uncertainty results
in the localization of the secondary, magnetically conjugate,

FIG. 2.ÈDeÐnition of loop parameters : loop point positions (x
i
, y

i
),

i \ 1, . . . , n starting at the primary footpoint at height theh1 \ hfoot,azimuth angle a between the loop footpoint baseline and heliographic
east-west direction, and the inclination angle Ë between the loop plane and
the vertical to the solar surface.
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FIG. 3.ÈPrinciple of dynamic stereoscopy is illustrated here with an example of two adjacent loops, where a thicker loop is bright at time whereas at1,
thinner loop is brightest at time From the loop positions measured at an intermediate reference time t, i.e., (middle panel in middle row),t2. (x

i
, y

i
) t1 \ t \ t2projections are calculated for the previous and following days for di†erent inclination angles Ë of the loop plane (left and right panel in middle row). By

extracting stripes parallel to the calculated projections Ë \ 10¡, 20¡, 30¡ (bottom) it can be seen that both loops appear only co-aligned with the stripe axis for
the correct projection angle Ë \ 20¡, regardless of the footpoint displacement *x between the two loops. The co-alignment criterion can therefore be used to
constrain the correct inclination angle Ë, even for dynamically changing loops.

footpoint. However, the general dipole characteristic of the
magnetic Ðeld in this active region provides sufficient guid-
ance to localize the secondary footpoint with an accuracy of

of the loop length. In order to obtain an error esti-[10%
mate of the location of the secondary footpoint, we repeat
the loop tracing procedure Ðve times for each loop and
obtain from the measured azimuth angles j \ 1, . . . , 5 aa

j
,

mean and standard deviation a ^ da.
3. The loop positions measured in the image at(x

i
, y

i
)

time are then transformed into heliographic longitudet1and latitude coordinates and altitudes based on(l
ij
, b

ij
) (h

ij
),

the azimuth angle a of the footpoint baseline and the vari-
able inclination angle which is varied over a range ofË

j
,

in increments of *Ë \ 1¡.[90¡ \ Ë
j
\ ]90¡

4. The heliographic coordinate is then transformedl
ij
(t1)

to the time of the second stereoscopic pair image,t2 l
ij
@ (t2),

using the solar di†erential rotation rate applied to the time

interval We use the di†erential rotation rate speci-(t2 [ t1).
Ðed by Allen (1973),

l@(t2) \ l(t1) ] [13¡.45 [ 3¡ sin2 b]
(t2 [ t1)
1 day

. (2)

The heliographic latitude and altitude are assumed tob
ij

h
ijbe constant during the considered time interval.

5. In the stereoscopic pair image at time we calculatet2the image coordinates of the projected loop struc-(x
ij
@ , y

ij
@ )

ture. Parallel to these loop curves (with typical lengths of
pixels) we extract image stripes of some widthn

s
\ 50È200

pixels) by interpolating the image brightness(n
w

\ 16
F(x, y) at the positions of the curved coordinate grid.

6. The stretched two-dimensional image stripes (n
s
] n

wpixels) are then scanned for parallel brightness ridges,
caused by ““ dynamic ÏÏ structures that are co-aligned (or
parallel-displaced) to the loop projection in image (fort2
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illustration see examples shown in Fig. 3, bottom). This
scanning process is numerically performed by measuring
the total lengths of parallel contiguous brightnessL (Ë

k
)

ridges detected in each image stripe k for a given angle Ë
k
.

As the examples in Figure 3 (bottom) show, loop projections
in stripes with angles Ë (e.g., Ë \ 10¡ or 30¡) that deviate
from the mean loop plane Ë \ 20¡) appear as curved fea-
tures and thus have shorter parallel segments than those
projections in stripes with inclination angles that coincide
with the mean loop plane (Ë \ 20¡). The numerical detec-
tion of the length of parallel segments is therefore a reliable
indicator of whether the inclination angle used in theË

kcoordinate transformation matches the e†ective loop plane
Ë. We evaluate this criterion in our algorithm by maximiz-
ing the sum of all detected contiguous parallel brightness
ridges, i.e., by maximizing the quantity (max [; asL (Ë

k
)])

a function of the variable inclination angle used in theË
kcoordinate transformation. This way we infer the most

likely value of the inclination angle Ë of the mean loop
plane.

7. The same procedure is repeated in forward and back-
ward directions in time. The mean and standard deviation
of Ë ^ dË is determined by averaging the two stereoscopic
solutions (^1 day).

The independent stereoscopic correlation in forward (]1
day) and backward ([1 day) direction provides a useful
redundancy of the solution. The time di†erence of ^1 day

corresponds to an aspect angle change of Except for^13¡.5.
steps 1È2, which constitute the deÐnition of a selected loop
feature, all other steps (3È7) of the stereoscopic correlation
are performed automatically by a numeric code without
human interaction. The determination of the loop inclina-
tion angle Ë is therefore achieved in a most objective way,
within the principle of dynamic stereoscopy.

2.3. L oop Geometry
With the dynamic stereoscopy method described above

we analyzed the three-dimensional coordinates of 30 loops
from the EIT 171 image on 1996 August 30 (Fig. 4, middleA�
column). The true three-dimensional geometry of (the
central axis of) a coronal loop can be characterized with
three orthogonal spatial coordinates i \ 1,[x(s

i
), y(s

i
), z(s

i
)],

. . . , n, parametrized by the loop length parameter Whens
i
.

we trace a loop structure in an image (see Fig. 4, middle
column), we can accurately measure the two coordinates

without imposing any geometric constraint on[x(s
i
), y(s

i
)],

its shape, as opposed to a method that Ðts a predeÐned
geometric model (e.g., a circular geometry or its elliptic
projection). We impose only some constraints on the third
coordinate namely, assuming that the loop segment isz(s

i
),

mathematically described in a plane, whose orientation we
quantify with two free parameters (Fig. 2) : with the azimuth
angle a (of the loop footpoint baseline) and the stereo-
scopically measured inclination angle Ë (with respect to the

FIG. 4.ÈProjections of 30 stereoscopically reconstructed loop segments (numbered white curves) are shown overlaid on the SOHO/EIT 171 imagesA�
(top) and the Ðltered images (bottom) of 1998 August 29 (left), 30 (center), and 31 (right). The 30 loop segments were traced from the Ðlter image of August 30
(bottom middle), whereas the projections on the previous and following day were calculated from the inclination angles Ë obtained from the dynamic
stereoscopy method. Note that the overall magnetic Ðeld structure is almost invariant during the 3 days, but dynamic changes of the loops produce slight
displacements between the calculated projections forward and backward in time and the actually observed Ðne structure.
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vertical). However, the planar approximation serves only
for mathematical convenience and deÐnes a mean loop
plane but does not require that the actual loop is exactly
conÐned in a plane because our dynamic stereoscopy
method allows for near-parallel displacements in time and
space within some range. One additional constraint is also
introduced by the reference level of the Ðrst footpointh(s1)
position, assumed to be located at a Ðxed height of h(s1) \

Mm.hfoot B 2.5
Some geometric elements of the analyzed 30 loops are

listed in Table 1 : the heliographic longitude and latitude(l1)
position of the primary footpoint(b1) [x(s1), y(s1), h(s1) \

the azimuth angle a of the footpoint baseline mea-hfoot],
sured at the primary footpoint, and the inclination angle Ë
of the loop plane. The average heliographic position of the
30 loop footpoints is whichSl

F1
T \ 251¡.0, Sb

F1
T \ [11¡.8,

is slightly southward of the Sun center position at this time,
l0 \ 255¡.8, b0 \ 7¡.2.

The average azimuth angle (modulo 180¡) of the 30 loop
footpoint baselines is a \ [3¡ ^ 10¡, which represents the
global orientation of the large-scale dipolar magnetic Ðeld
that dominates the active region, which was used as a guide
to estimate the azimuth angle of the footpoint baseline for
individual loop segments. The only complete loop that
could be traced out (without gaps between the footpoints) is
loop 1, which has an azimuth angle of a \ 15¡ ^ 1¡.

The inclination angles Ë of the loop planes cover a large
range from Ë \ [56¡ to Ë \ ]69¡, having an average of

SËT \ 7¡ ^ 37¡. The southern loops (loops 1È11, 23È30) all
show an inclination toward south (with Ë negative if the
primary footpoint is to the east), whereas the northern loops
(loops 12È22) show a systematic inclination toward north
(with Ë positive if the primary footpoint is to the east). This
fan-shaped divergence of loop planes is consistent with the
overall magnetic dipolar Ðeld, having the dipole axis
aligned to the east-west direction.

We visualize the three-dimensional structure of the ste-
reoscopically reconstructed 30 loops in Figure 5, where dif-
ferent perspectives and viewing angles are displayed. The
traced segments (Fig. 4) of the reconstructed loops are
marked with thick lines in Figure 5, whereas the thin lines
represent circular segments in the loop plane, constrained
by the two footpoints and the endpoint of the traced
segment. We rotated these reconstructed 30 loops by [7.2
days to the east (Fig. 5, bottom left), in order to illustrate the
distribution of inclination angles. The group of loops that
are inclined to the south in our EIT image of 1996 August
30 are also found to have a similar conÐguration (with
similar loop heights and loop plane inclinations) in an EIT
image observed 7.2 days earlier, when this active region
crossed the east limb (Fig. 5, top left).

2.4. L oop Background Subtraction
We parametrize the positions of the traced loop segments

from the image coordinates as a function of the[x(s
i
), y(s

i
)]

(projected) loop length parameter by interpolating thes
i
,

TABLE 1

GEOMETRIC PARAMETERS OF 30 CORONAL LOOPS (1996 AUGUST 29, EIT 171 A� )

Heliographic Azimuth Inclination Loop Center Loop Loop Scale Loop
Loop Coordinates l1, b1 Angle a Angle Ë Radius R0 O†set Z0 Trace L 1 Length L Height j Width w

Number (deg) (deg) (deg) (Mm) (Mm) (Mm) (Mm) (Mm) (Mm)

1 . . . . . . . . . . . . . 247.9, [15.4 15 ^ 1 [42 ^ 1 56 [14 149 149 49 6.8
2 . . . . . . . . . . . . . 247.7, [15.5 13 ^ 1 [49 ^ 5 62 18 91 234 50 6.1
3 . . . . . . . . . . . . . 247.4, [15.6 12 ^ 1 [34 ^ 1 68 31 89 282 57 7.4
4 . . . . . . . . . . . . . 247.3, [15.0 8 ^ 2 [26 ^ 1 77 45 104 338 57 6.9
5 . . . . . . . . . . . . . 247.1, [14.9 8 ^ 3 [49 ^ 1 73 37 121 309 56 6.3
6 . . . . . . . . . . . . . 247.0, [13.9 2 ^ 2 [56 ^ 1 84 53 80 381 42 7.0
7 . . . . . . . . . . . . . 246.1, [14.7 4 ^ 2 [36 ^ 1 89 51 125 389 62 7.1
8 . . . . . . . . . . . . . 245.2, [14.7 9 ^ 2 [33 ^ 2 113 80 124 534 57 7.1
9 . . . . . . . . . . . . . 247.0, [12.2 [3 ^ 3 [12 ^ 1 86 44 41 366 60 8.1
10 . . . . . . . . . . . . 245.8, [13.3 1 ^ 2 [23 ^ 1 124 95 90 609 53 7.9
11 . . . . . . . . . . . . 244.9, [12.2 1 ^ 3 [31 ^ 2 144 116 56 725 66 6.8
12 . . . . . . . . . . . . 247.3, [10.7 [6 ^ 2 10 ^ 1 116 94 153 585 60 7.8
13 . . . . . . . . . . . . 250.6, [10.1 [9 ^ 7 11 ^ 1 73 60 62 373 60 6.4
14 . . . . . . . . . . . . 247.1, [9.8 [8 ^ 3 10 ^ 1 113 87 70 554 33 6.4
15 . . . . . . . . . . . . 247.5, [9.0 [8 ^ 1 12 ^ 1 125 105 103 643 47 6.8
16 . . . . . . . . . . . . 248.1, [8.5 [11 ^ 3 25 ^ 1 85 59 63 400 53 6.7
17 . . . . . . . . . . . . 248.5, [8.0 [14 ^ 4 32 ^ 1 93 71 52 455 47 7.4
18 . . . . . . . . . . . . 249.0, [7.4 [9 ^ 4 40 ^ 3 92 79 109 483 93 5.6
19 . . . . . . . . . . . . 249.6, [6.9 [18 ^ 3 39 ^ 1 116 95 130 590 65 7.9
20 . . . . . . . . . . . . 250.7, [6.6 [24 ^ 6 52 ^ 6 78 64 103 399 56 7.7
21 . . . . . . . . . . . . 251.5, [6.1 [21 ^ 6 58 ^ 3 67 47 85 318 45 7.6
22 . . . . . . . . . . . . 251.9, [5.7 [25 ^ 5 58 ^ 3 49 29 53 217 58 7.2
23 . . . . . . . . . . . . 259.1, [10.7 [4 ^ 4 0 ^ 1 102 71 69 479 60 8.0
24 . . . . . . . . . . . . 258.6, [11.4 [1 ^ 4 14 ^ 6 114 90 106 568 64 8.7
25 . . . . . . . . . . . . 263.2, [16.6 [1 ^ 5 43 ^ 1 138 70 59 582 42 8.1
26 . . . . . . . . . . . . 259.9, [13.8 [8 ^ 4 13 ^ 2 100 60 39 446 59 5.1
27 . . . . . . . . . . . . 259.1, [13.4 [2 ^ 3 50 ^ 2 101 68 72 471 58 7.1
28 . . . . . . . . . . . . 258.0, [13.4 0 ^ 2 27 ^ 2 90 63 86 423 57 7.5
29 . . . . . . . . . . . . 257.9, [13.7 5 ^ 2 36 ^ 1 78 45 88 344 60 6.0
30 . . . . . . . . . . . . 257.5, [13.8 [2 ^ 3 69 ^ 1 76 44 86 336 38 7.4

Average . . . 251.0 (^5.4), [11.8 (^3.3) [3 (^10) 7 (^37) 93 (^23) 62 (^27) 89 (^29) 433 (^136) 55 (^10) 7.1 (^0.8)
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FIG. 5.ÈThree di†erent projections of the stereoscopically reconstructed 30 loops of AR 7986 are shown. The loop segments that were traced from the
1996 August 30, 171 image are marked with thick solid lines, whereas the extrapolated segments (thin solid lines) represent circular geometries extrapolatedA�
from the traced segments. The three views are (1) as observed from Earth with (bottom right), (2) rotated to north by (top right), and (3)l0, b0 b0@ \ b0 [ 100¡
rotated to east by (corresponding to [7.2 days of solar rotation, bottom left). An EIT 171 image observed at the same time ([7.2 daysl0@ \ l0 ] 97¡.2 A�
earlier) is shown for comparison (top left), illustrating a similar range of inclination angles and loop heights as found from stereoscopic correlations a week
later. The heliographic grid has a spacing of 5¡ degrees or 60 Mm.

coordinates with a constant resolution of *s
i
\ s

i`1 [ s
i
\

1 pixel in the image plane. These positions mark the central
axes of the analyzed loops. For single-loop analysis it is
convenient to introduce a coordinate grid that is co-[s

i
, t

j
]

aligned with the loop axis and is the coordinate ortho-s
j
, t

jgonal to the loop axis. The projections [x(s
i
, t

j
), y(s

i
, t

j
)]

of these curved coordinate grids are shown in Figure 6 (top
right). We parametrized both coordinates with a[s

i
, t

j
]

uniform resolution of 1 pixel and have chosen a width of 16
pixels for the width of the stripes symmetrically bracket-(t

j
),

ing the central loop axis. We show the radiative Ñux asF(t
j
)

a function of the loop cross section for each loop (1È30)t
jand for each position along the central loop axis with ans

iincremental step of pixel in Figure 6, measured from*s
i
\ 1

the EIT 171 image of 1996 August 30.A�
In a next step we attempt to separate the loop-associated

Ñuxes from the loop-unrelated background. This is a very

crucial step to determine the correct emission measure and
electron density in a given loop. This task is difficult
because most of the loops are very closely spaced and
separated only by a few pixels at their primary footpoint
(see Fig. 6). Very few loops occur in an isolated environment
(e.g., such as loop 25 ; see Figs. 4È6). For many cross sec-
tions there is not enough separation between adjacent loops
to model the loop-unrelated background properly. The fact
that the Ñux-unrelated background makes up typically
50%È90% of the total EUV Ñux measured at a given line
of sight (see Fig. 7) indicates that we can separate out only
a fraction of superposed and nested loops, like the top-
most elements on the topological surface of a ““ strand of
spaghetti. ÏÏ

We tested various methods and found the following to be
least susceptible to confusion by adjacent loops. We calcu-
lated the background proÐle to the observed ÑuxF

B
(t

j
) F(t

j
)



AR 7986, Loop Stripe Projections #1-30
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FIG. 6.ÈPositions of the curved coordinate grids of the 30 analyzed loop segments are shown in the top right panel, which has the same orientation as the
1996 August 30 map shown in Fig. 4 (middle). The coordinate grid of loop 1 is represented with 1 pixel resolution, whereas only the outer borders and central
axes are indicated for the other loop segments. The vertically oriented panels represent the coordinate grids of the analyzed 30 loops, stretched out along the
loop axis. The top of the panels corresponds to the primary footpoint (see positions in Table 1). In each panel we show the EIT 171 Ñux loop crossl1, b1 A�
sections measured perpendicularly to the loop axes. Successive cross sections are separated by a distance of 1 pixel along the loop axis. The Ñux associated
with each loop is marked with a gray area, obtained by background subtraction with a cubic spline interpolation between both sides of the loop cross section.
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FIG. 7.ÈLoop-associated EUV Ñux thick line], the total EUV Ñux thin line], and the background dotted line][Floop(s), [Ftotal(s), [Ftotal(s) [ Fflux(s),measured along the loop is shown for loop 1 (left). A histogram of the relative fractions (integrated over the traced loop lengths) is shown from allFloop/Ftotal30 analyzed loops (right).

by cubic spline interpolation between various cross section
boundaries which were varied over a range of 1, . . . ,[t1, t2],
4 pixels (or 2È7 Mm for the half-width of the loop cross
section) on both sides of the central loop axis. From the
varied loop boundaries those were used for the[t1, t2]
background envelope that maximize the Ñux integrated
over loop cross section, i.e., the maximum of / [F(t

j
)

because this quantity is invariant to lateral[ F
B
(t

j
)]dt

jdisplacements (in transverse direction t) and is least suscep-
tible to changes of the functional form F(t) along the loop
coordinate s. This method has the advantage of adjusting
for loop thickness variations, for o†sets in tracing of the
central axis, and for co-alignment errors between the 171
and 195 image in the use of the Ðlter-ratio technique. TheA�
so-determined loop-associated Ñuxes are shown with gray
areas for each cross section in Figure 6. The resultsF(t

j
) o

s/sishow that the allowed loop half-width range of ^1, . . . , 4
pixels separates most of the loops reasonably, except for
occasional double loop detections (e.g., 22 or 26 in Fig. 6)
near the primary footpoint. Such loop segments where the
loop separation fails will be excluded in further analysis.

2.5. L oop Cross Sections
We measured the loop width w(s) as a function of the

loop length parameter s, using the deÐnition of the equiva-
lent width w(s),

w(s) \ / F(s, t
j
) [ F

B
(s, t

j
) dt

j
max [F(s, t

j
) [ F

B
(s, t

j
)]

. (3)

These loop widths w(s) are shown as a function of the loop
length s in Figure 8 for the 10 loops that are least confused
by adjacent loops, as can be judged from the cross sections

shown in Figure 6 (loop 1, 8, 11, 14, 15, 19, 20, 21,F(t
j
) o

s/si25, 28). Performing a linear regression Ðtted to the observed
values w(s), we Ðnd a signiÐcant variation of the loop thick-
ness only for two of them (loop 20 and 28). To quantify the
variation of the loop thickness we calculated a loop diver-
gence factor, deÐned by the average width in the upper part

to the lower part of the(smax/2 \ s \ smax) (0 \ s \ smax/2)
traced loop segment. We remind the reader that the traced
loop segments generally extend over about 1 density scale
height but often do not reach the loop top (except for the
smallest loop, 1). The loop divergence factors and their
uncertainties are shown in Figure 8 (bottom right) for each
loop. We caution that some of the loop thickness variation
near the footpoints is due to separation problems of closely
spaced adjacent loops (as can be judged from Fig. 6). A

histogram of average loop widths is shown in Figure 8 (top
right), whereas the individual values w and their mean and
standard deviation (w \ 7100 ^ 800 km) are also listed in
Table 1. The preference for such a narrow range of loop
diameters is perhaps an instrumental resolution bias
because the Ðnest recognizable structures are most likely to
be seen at a scale corresponding to the size of a few pixels.

2.6. L oop Densities and Scale Heights
For electron density and temperature diagnostics we are

using a Ðlter-ratio technique applied to the EIT 171 and 195
wavelength images, based on the most recent EIT stan-A�

dard software (status of 1998 February, Newmark et al.
1996 ; SOHO EIT UserÏs Guide). The resulting emission
measures EM and temperatures are based on the cal-T

e
EIT

culation of synthetic spectra using the CHIANTI database,
containing some 1400 emission lines in the 150È400 A�
wavelength range (Dere et al. 1997). For details of the EIT
calibration and error analysis, the reader is referred to

et al. (1995), Moses et al. (1997), andDelaboudinière
Neupert et al. (1998). Further cross calibrations of the EIT
instrument with NRL rocket Ñights carrying an EIT dupli-
cate instrument are in progress (led by D. Moses). In brief,
we note that the main errors at this stage are systematic and
due to calibration questions. This has a larger e†ect on the
emission measure than on the temperature because the
latter is determined from a ratio, in which systematic errors
cancel out to some extent. Our estimate of the absolute
error in the temperature determination is about 0.2 MK,
whereas the emission measure has a systematic error of up
to a factor of 4. The abundances in the above calculations
are those given by Meyer (1985) for the corona. As iron is a
lowÈÐrst ionization potential (FIP) element, abundance
questions play a minor role in the uncertainties.

To determine the electron density along individualn
e
(s)

loops, we use the background-subtracted EIT Ñuxes
in the Ðlter ratios and the loop widthsFloop(s) \ F(s) [ F

B
(s)

w(s). An additional important loop parameter is the line-of-
sight angle t(s), which provides a correction factor of the
e†ective column depth for a loop with circular cross section
speciÐed by a diameter w(s), i.e., (seew

z
(s) \ w(s)/cos [t(s)]

Appendix B). With this parametrization we deÐne the
density along a loop (normalized to a Ðlling factor ofn

e
(s)

unity) by

n
e
(s) \

SEM(s)
w

z
(s)

\
SEM(s) cos [t(s)]

w(s)
, (4)
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FIG. 8.ÈVariation of the loop thickness is shown for the 10 loops with the least confusion by adjacent loops (see cross sections in Fig. 6) as a function of
the loop length s (left). A linear regression Ðt is indicated (solid line in left panels). The average (equivalent) width w is histogrammed for all 30 analyzed loops
(top right). A loop divergence factor is calculated from the ratio of the average width in the upper half and lower half (traced) loop segments (right bottom).
Note that most of the loops show no signiÐcant loop thickness variation.

with the loop length s(x, y) parametrized as a function of the
image position (x, y), from which the EIT emission measure
EM(x, y) is measured. Because the line-of-sight angle t(s) is
very sensitive to the loop orientation, correct values of the
electron density can only be obtained from an appro-n

e
(s)

priate three-dimensional model of the loop (constrained by
stereoscopic correlations here). The projection e†ect of the
loop curvature on the e†ective column depth and thew

z
(s),

e†ect of the inclination angle Ë of the loop plane on the
inferred density scale height j(Ë) are illustrated in Figure 9
(see also discussion in Alexander & Katsev 1996).

The electron density calculated from equation (4) isn
e
(s)

shown graphically for the 10 least-confused loops (1, 8, 11,
14, 15, 19, 20, 21, 25, 28) in Figure 10 (left). Because the
height dependence s(h) of the loop length is known from our
stereoscopic reconstruction (displayed in Fig. 5), we can
directly obtain the parametrization and Ðtn

e
[s(h)] # n

e
(h)

an exponential density model,

n
e
(h) \ n

e0 exp
C

[ h
j(T

e
)
D

(5)

to obtain a scale height temperature which is deÐned byT
e
j,

(e.g., Lang 1980, p. 285)

j(T
e
) \ kB T

e
kmH g

B 46
A T

e
1 MK

B
[Mm] , (6)

with the Boltzmann constant, k the mean molecularkBweight (k B 1.4 for the solar corona), the mass of themH

hydrogen atom, and g the acceleration of gravity at the
solar surface. The so obtained scale height j, with a mean of
j \ 55 ^ 10 Mm, and the inferred scale height temperature

with a mean of are listed in Tables 1T
e
j, T

e
j \ 1.22 ^ 0.23,

and 2 for each of the analyzed 30 loops. Loop segment
ranges that are obviously confused by adjacent or crossing
loops (as can be judged from Fig. 6), have been excluded in
the Ðtting of the scale height model. We Ðnd that most of
the analyzed loop segments Ðt closely an exponential
density model (see Fig. 10, left). Deviations from an expo-
nential density model can often be explained by uncer-
tainties in the background subtraction or by confusion from
adjacent or overlying loops. A correction to the local scale
height temperature would also result from temperature gra-
dients (° 2.8), which are of the order (dT /ds)/(T /j) B
0.05 ^ 0.20 and are neglected here.

2.7. L oop Temperatures
Independently of the scale height temperature we canT

e
j,

also determine the temperature directly from the EIT Ðlter
ratio (as described in ° 2.6), which moreover provides a
temperature di†erentiation along the loop, SinceT

e
EIT(s).

our loop deÐnitions are based on tracing of an EIT 171 A�
image, we use only the Ðlter ratio of EIT 171 (Fe IX, Fe X)A�
and 195 (Fe XII), which is sensitive in the temperatureA�
regime of MK. We are using the spatial loopT

e
\ 1.0È1.5

deÐnition [x(s), y(s)] based on the 171 image and applyA�
the same background-subtraction technique to the 195 A�
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FIG. 9.ÈL eft : The e†ect of the variable column depth measuredw
z
(s)

parallel to the line of sight z is illustrated as a function of the loop length
parameter s, for a loop with a constant diameter w. Right : The e†ect of the
inclination angle Ë of the loop plane on the inferred density scale height
j(Ë) is shown. Both e†ects have to be accounted for the determination of
the electron density along the loop.n

e
(s)

image before we determine the temperature from the
Ðlter ratio Because our(F195 [ F

B
195)/(F171 [ F

B
171).

background-subtraction technique has some tolerance (of
^1, . . . , 4 pixels) in the localization of the loop cross section
(by maximizing the Ñux integrated over the loop cross
section), the Ðlter-ratio is not susceptible to small co-
alignment errors between the 171 and 195 image. TheA�
employed background-subtraction technique also requires
a correlated structure (with a width of 2È8 pixels) in both
wavelengths, whereas larger or di†use structures with poss-
ibly di†erent temperatures are safely subtracted out.

The Ðlter-ratio temperatures averaged over the loopT
e
EIT

segments are tabulated in Table 2, with a mean of T
e
EIT \

1.21 ^ 0.06 MK. The distribution of Ðlter-ratio tem-
peratures is shown in Figure 11 (bottom left), alongN(T

e
EIT)

with the distribution of scale height temperatures N(T
e
j)

(Fig. 11, top left), both having almost identical means. The
range of scale height temperatures (^0.23 MK) is broader
than the range of EIT Ðlter-ratio temperatures (^0.06 MK),
probably because of systematic errors in background sub-
traction and loop separation. This is also consistent with
the scatter plot of the two temperature deÐnitions (Fig. 11,
top right), where no obvious correlation is seen. Despite
these unavoidable uncertainties in the background subtrac-
tion, it is remarkable that the means of the two indepen-
dently determined temperatures coincide so closely.

2.8. L oop Temperature Gradients
The detailed variation of the temperature alongT

e
EIT(s)

the loop length s is shown for the 10 least-confused loops in

TABLE 2

PHYSICAL PARAMETERS OF 30 CORONAL LOOPS (1996 AUGUST 29, EIT 171 A� )

Emission Electron Scale Height Filter-Ratio Temperature Conductive Steady State Magnetic
Measure Density Temperature Temperature Gradient Loss Rate Radiative Loss Heating Rate Field

Loop EM0 n
e
/109 T

e
j T

e
EIT dT /ds +F

c
] 103 Rate E

R
] 103 E

H
] 103 Bfoot

Number log (cm~5) (cm~3) (MK) (MK) (K km~1) (ergs cm~3 s~1) (ergs cm~3 s~1) (ergs cm~3 s~1) (G)

1 . . . . . . . . . . . . 27.71 2.5 1.08 ^ 0.07 1.25 ^ 0.09 2.2 ^ 0.5 [0.001 [0.718 0.716 [413
2 . . . . . . . . . . . . 27.93 2.3 1.09 ^ 0.12 1.27 ^ 0.10 1.7 ^ 1.0 [0.001 [0.607 0.607 [413
3 . . . . . . . . . . . . 27.79 2.1 1.25 ^ 0.13 1.22 ^ 0.10 [0.1 ^ 0.8 [0.000 [0.506 0.506 [285
4 . . . . . . . . . . . . 27.60 2.6 1.26 ^ 0.14 1.27 ^ 0.11 3.7 ^ 0.8 [0.004 [0.776 0.773 [285
5 . . . . . . . . . . . . 27.34 2.5 1.22 ^ 0.33 1.23 ^ 0.10 [1.1 ^ 0.4 [0.000 [0.718 0.718 [270
6 . . . . . . . . . . . . 29.68 3.7 0.93 ^ 0.08 1.30 ^ 0.12 7.9 ^ 2.7 [0.015 [1.572 1.557 [298
7 . . . . . . . . . . . . 27.88 1.7 1.36 ^ 0.17 1.19 ^ 0.09 0.9 ^ 0.3 [0.000 [0.332 0.332 [261
8 . . . . . . . . . . . . 27.45 2.2 1.26 ^ 0.10 1.23 ^ 0.06 0.9 ^ 0.2 [0.000 [0.556 0.555 [114
9 . . . . . . . . . . . . 27.52 2.1 1.32 ^ 0.53 1.15 ^ 0.03 0.6 ^ 1.0 [0.000 [0.506 0.506 [333
10 . . . . . . . . . . . 27.49 1.4 1.16 ^ 0.30 1.21 ^ 0.11 2.2 ^ 0.5 [0.001 [0.225 0.224 [148
11 . . . . . . . . . . . 27.11 1.6 1.44 ^ 0.18 1.20 ^ 0.09 4.9 ^ 0.4 [0.006 [0.294 0.288 7
12 . . . . . . . . . . . 27.56 2.0 1.31 ^ 0.07 1.10 ^ 0.06 0.5 ^ 0.2 [0.000 [0.459 0.459 [208
13 . . . . . . . . . . . 27.41 1.8 1.31 ^ 0.17 1.21 ^ 0.11 4.6 ^ 1.3 [0.006 [0.372 0.366 [252
14 . . . . . . . . . . . 27.18 1.7 0.73 ^ 0.08 1.12 ^ 0.05 1.2 ^ 0.7 [0.000 [0.332 0.331 [157
15 . . . . . . . . . . . 27.48 2.0 1.04 ^ 0.08 1.18 ^ 0.09 1.8 ^ 0.3 [0.001 [0.459 0.458 [294
16 . . . . . . . . . . . 27.28 1.4 1.15 ^ 0.32 1.24 ^ 0.12 [6.4 ^ 0.7 [0.000 [0.225 0.225 [269
17 . . . . . . . . . . . 27.04 1.7 1.03 ^ 0.30 1.18 ^ 0.04 2.2 ^ 0.6 [0.001 [0.332 0.330 [178
18 . . . . . . . . . . . 26.90 1.1 2.03 ^ 0.41 1.30 ^ 0.06 0.7 ^ 0.6 [0.000 [0.139 0.139 [159
19 . . . . . . . . . . . 27.28 1.3 1.43 ^ 0.17 1.18 ^ 0.04 0.0 ^ 0.4 [0.000 [0.194 0.194 [129
20 . . . . . . . . . . . 27.43 1.8 1.22 ^ 0.05 1.22 ^ 0.04 1.2 ^ 0.2 [0.000 [0.372 0.372 [140
21 . . . . . . . . . . . 27.51 2.1 0.98 ^ 0.11 1.15 ^ 0.04 0.8 ^ 0.3 [0.000 [0.506 0.506 [97
22 . . . . . . . . . . . 27.32 1.0 1.27 ^ 0.82 1.22 ^ 0.12 [4.5 ^ 1.9 [0.000 [0.115 0.115 [159
23 . . . . . . . . . . . 27.61 2.3 1.31 ^ 0.28 1.23 ^ 0.15 11.4 ^ 1.0 [0.024 [0.607 0.584 54
24 . . . . . . . . . . . 28.29 1.3 1.41 ^ 0.22 1.20 ^ 0.08 [7.3 ^ 4.0 [0.000 [0.194 0.194 951
25 . . . . . . . . . . . 27.38 1.8 0.93 ^ 0.04 1.18 ^ 0.11 5.4 ^ 0.5 [0.007 [0.372 0.365 76
26 . . . . . . . . . . . 26.95 1.4 1.30 ^ 0.36 1.15 ^ 0.08 5.9 ^ 1.8 [0.009 [0.225 0.216 60
27 . . . . . . . . . . . 27.20 1.5 1.26 ^ 0.30 1.21 ^ 0.07 [1.7 ^ 0.5 [0.000 [0.258 0.258 61
28 . . . . . . . . . . . 27.79 2.6 1.24 ^ 0.05 1.12 ^ 0.04 0.0 ^ 0.3 [0.000 [0.776 0.776 128
29 . . . . . . . . . . . 27.76 2.4 1.31 ^ 0.06 1.36 ^ 0.07 [1.2 ^ 0.6 [0.000 [0.661 0.661 128
30 . . . . . . . . . . . 29.48 1.7 0.84 ^ 0.10 1.16 ^ 0.08 [9.7 ^ 4.8 [0.000 [0.332 0.332 142

Average . . . 27.61 (^0.61) 1.92 (^0.56) 1.22 (^0.23) 1.21 (^0.06) 0.960 (^4.265) [0.003 (^0.005) [0.458 (^0.285) 0.455 (^0.283) [108 (^257)
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FIG. 10.ÈElectron density (left) and the EIT Ðlter-ratio electron temperature (right) as a function of the loop length s for the same 10 loopsn
e
(s) T

e
(s)

selected in Fig. 8. An exponential model is Ðtted, yielding the density scale height j and scale height temperature indicated in the left panels. Then
e
(h) T

e
j

average EIT Ðlter-ratio temperature (obtained from 171/195 images) is indicated in the right panels. A temperature gradient is listed if theT
e
EIT A� dT

e
/ds

gradient is signiÐcant.
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FIG. 11.ÈStatistics of scale height temperatures (left top), EIT Ðlter-ratio temperatures (left bottom), scatter plot of these two temperatures (rightT
e
j T

e
EIT

top), and EIT temperature gradients dT /ds (right bottom) for all analyzed 30 loops.

Figure 10 (right). We note that the Ðlter-ratio temperature
varies sometimes discontinuously along the loop, e.g., there
is a jump from MK to MK at s \ 70 MmT

e
\ 1.35 T

e
\ 1.1

in loop 1 (Fig. 10, top right), which may be caused by con-
tamination from a hotter loop that is located almost paral-
lel to loop 1 at s \ 70 Mm (see cross sections in Fig. 6). Such
confusion problems can only be identiÐed in hindsight.
Despite such confusion problems, there seems to be a trend
of a positive temperature gradient dT /ds [ 0 above the
footpoint for most of the loops (Table 2). To estimate these
average temperature gradients (without correcting for
multiloop confusion) we performed a linear regression T

e
(s)

for all loops. The most signiÐcant temperature gradients are
found for loop 11 (dT /ds \ ]0.0049 K m~1), for loop 20
(dT /ds \ ]0.0012 K m~1), and for loop 25 (dT /ds \
] 0.0054 K m~1) ; see examples in Figure 10 and Table 1.
The distribution of temperature gradients N(dT /ds) is
shown in Figure 11 (bottom right), revealing that B75% of
the loops have a positive temperature gradient dT /ds [ 0
across the Ðrst scale height above their footpoints. Higher
parts of these loops are not detectable in EIT(h Z 1j)
images due to insufficient density contrast (1 scale height
corresponds to a factor of B3 in density or a factor of B10
in emission measure or EIT Ñux).

2.9. Magnetic Field, Plasma-b Parameter, and
VelocityAlfve� n

There is no accurate method available yet to determine
the height dependence of the coronal magnetic Ðeld, nor to

trace the magnetic Ðeld along a particular active region
loop. Some attempts are in progress to match loop geome-
tries observed in SXR or EUV with potential Ðeld models
(constrained by the photospheric boundary and projections
of coronal loops ; Gary 1997 ; Gary & Alexander 1999). As a
Ðrst approximation to investigate the magnetic Ðeld along
the observed EUV loops, we calculate here a potential Ðeld
model of AR 7986, using the code of Sakurai (1982) applied
to a SOHO/Michelson-Doppler Imager (MDI) magneto-
gram, recorded on the same day as the EIT image (with a
time di†erence of 20 hr). The potential Ðeld model is shown
in Figure 12, overlaid on the MDI magnetogram, and co-
aligned with the traced EIT loops (by transforming the
three-dimensional Ðeld lines according to the solar rotation
rate during the time di†erence). Note that the EUV loops
represent independent tracers of the plasma along magnetic
Ðeld lines and thus convey an important test of how well the
coronal magnetic Ðeld is represented with a potential Ðeld
model. The match of the traced EUV loops with the poten-
tial Ðeld shown in Figure 12 is remarkably good, given the
time di†erence of 20 hr and the nonpotential structure
implied by currents that are likely to be present in this
active region, imposed by the observed Ðlament along the
neutral line. Detailed modeling with potential and force-free
magnetic Ðelds and investigating the best match with indi-
vidual loops traced from EIT and SXT images will be
pursued in a subsequent study.

To estimate the magnetic Ðeld along the traced EIT loops
we localize those potential Ðeld lines that have the closest
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FIG. 12.ÈSOHO/MDI magnetogram recorded on 1996 August 30, 2048 UT, rotated to the time of the analyzed EIT image (1996 August 30, 0020 :14 UT),
with contour levels at B \ [350, [250, . . . , ]1150 G (in steps of 100 G). Magnetic Ðeld lines calculated from a potential Ðeld model are overlaid (thin lines)
onto the 30 loops (thick lines) traced from the SOHO/EIT image.

footpoints to the EIT loop footpoints and take the height
dependence of their magnetic Ðeld strength B(h) as a proxy
for the EIT loops. The height dependence of the magnetic
Ðeld B(h) of the 30 potential Ðeld lines closest to the
analyzed EIT loops is shown in Figure 13 (top). It can be
approximated with a dipole model,

B(h) \ Bfoot
A

1 ] h
h
D

B~3
, (7)

with a mean dipole depth of Mm and a range ofh
D

\ 75
footpoint Ðeld strengths . . . , 230 G (dashed linesBfoot B 20,
in Fig. 13, top), or a mean of G.Bfoot B 100

With the potential Ðeld B(h) and the measured density
and temperature proÐles we can now determinen

e
(h) T

e
(h)

the height dependence of the plasma-b parameter for each
of the 30 analyzed loops,

b(h) \ n(h)kT
e
(h)

[B(h)2/8n]
B 3.47 ] 10~15 n

e
(h)T

e
(h)

B(h)2 , (8)

which quantiÐes the ratio of the thermal to the magnetic
pressure and thus provides a crucial criterion for magnetic
conÐnement. The plasma-b parameter is shown in Figure 13
(middle), ranging typically at in the entire coronalb [ 0.1
range Mm) of the EUV loops. We Ðnd only 2 (out(h [ 200

of 30 loops) that exceed the critical limit of b º 1, possibly
implying currents and nonpotential magnetic Ðelds along
the loops. Gary & Alexander (1999) found such regimes
with in the upper corona at from analysisb Z 1 h Z 0.2 R

_of SXR loops, in contrast to the common belief that the
coronal value is always b > 1 (Dulk & McLean 1978 ; Priest
1981 ; Sakurai 1989 ; Gary 1990 ; McClymont, Jiao, & Mikic�
1997). Reliable measurements of the plasma-b parameter
require fully resolved structures, such as single loops
analyzed here (save for unknown Ðlling factors), whereas
line-of-sight averaged densities are expected to underesti-
mate the density in loop structures and thus are biased
toward too low b values.

A further plasma parameter that is of interest for coronal
loop dynamics is the velocity, which can be com-Alfve� n
puted along individual loops thanks to the knowledge of
the magnetic Ðeld B(h) and density n

e
(h),

vA(h) \ B(h)

J4nn
i
(h)m

i

B 2.18]1011 B(h)

Jn
e
(h)

cm s~1 . (9)

This quantity is shown in Figure 13 (bottom). The Alfve� n
velocity is found to be highest near the footpoints of the
analyzed EUV loops, ranging from tovA(h \ 0) B 2000
6000 km s~1, and is dropping o† steadily with larger height
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FIG. 13.ÈMagnetic Ðeld B(h) (top), the plasma-b parameter or ratio of
thermal to magnetic pressure, b(h) (middle), and the velocityAlfve� n vA(h)
(bottom) determined as a function of height h for the 30 analyzed EIT
loops. The magnetic Ðeld B(h) is taken from the nearest potential Ðeld line
(see Fig. 12). The vertical density scale height j \ 55 Mm is marked with a
dotted line. A potential Ðeld model is indicated with dashed curves (top).

to a characteristic value of Mm) B 500È1000 kmvA(h Z 100
s~1.

3. PHYSICAL MODELS AND DISCUSSION

The density and temperature diagnostics obtained as
functions of three-dimensional space coordinates allow us
to investigate the physical conditions in the analyzed loops
and to test some theoretical loop models and scaling laws.
The major beneÐt of this study is that the loop geometry is
well determined by the data, so that no geometric assump-
tions have to be made in the application of theoretical loop
models.

3.1. L oop L ength Parametrization
Because the thermal energy is generally much smaller

than the magnetic energy in the corona [plasma parameter
energy transport in coronal loopsb \ n

e
kB T

e
/(B2/8n) > 1],

can be reduced to one dimension, as a function of the loop
length parameter s. In our analysis we detected, except for
one complete loop, only segments of loops that extend
about 1 scale height above the primary footpoint. We will
denote the start of the traced loop segments at the primary
footpoint with s \ 0, the end of the traced loop segment
with and the full loop length extending all the ways \ L 1,
to the secondary footpoint with s \ L . By localizing the
secondary footpoint of traced loops from the global dipolar
magnetic Ðeld of the active region, we obtained the approx-
imate azimuth angle and length of the footpoint baseline.
Using the stereoscopically determined inclination angle Ë
and the azimuth angle a of the footpoint baseline (Fig. 2), we
were able to project the three-dimensional loop coordinates
into the loop plane X-Z (eq. [A5]). In this loop plane we
can approximate the loop geometry with a circular func-
tion, by interpolating the three loop positions (s \ 0, L )L 1,
with the circle parametrization [X(r), Y (r)],

X \ R0 cos r , (10)

Z \ R0 sin r ] Z0 , (11)

yielding the circular loop radius and the o†set of theR0 Z0circle center from the footpoint baseline. The loop length
s(r) can now be parametrized as a function of the circular
angle r,

s(r) \ R0(r ] r0) , [r0 ¹ r ¹ (n ] r0) , (12)

where the starting angle is deÐned by the loop radiusr0 R0and center o†set Z0,

r0 \ arcsin
Z0
R0

. (13)

The full loop length L is then

L \ R0(n ] 2r0) . (14)

The geometric elements and L are listed inR0, Z0, L 1,
Table 1 for all 30 loops. The same circular geometry was
also used to visualize the extrapolated loop segments in
Figure 5.

For the application of the hydrostatic equilibrium equa-
tion we need also to quantify the height dependence h(s) of
the loop length, which is determined by the loop plane
inclination angle Ë and equations (11)È(12),

h(s) \ Z cos Ë \
C

Z0 ] R0 sin
A s

R0
[ r0

BD
cos Ë .

(15)

The apexes or loop tops, have ahtop \ (Z0 ] R0) cos Ë,
range of Mm in our sample of 30 loops andhtop \ 30È225
thus extend up to 4 scale heights (with j \ 55 ^ 10 Mm).

3.2. Static L oop Model
In static loop models it is assumed that mass Ñows can be

neglected, leading to the basic steady state energy balance
equation, e.g., derived by Rosner et al. (1978),

E
H
(s) ] E

R
(s) [ +F

C
(s) \ 0 , (16)
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where denotes the rate of heat deposition, the energyE
H

E
Rradiated from the loop, and is the thermal conductiveF

CÑux, to be balanced at each location s of the loop in a static
model.

The conductive Ñux term can be expressed in one-
dimensional form (with the Spitzer thermal conductivity
i \ 0.92 ] 10~6 ergs s~1 cm~1 K~7@2 ; Spitzer 1962, p. 144)
by

+F
C
(s) \ d

ds
C

[iT 5@2(s)
dT (s)

ds
D

B[5
2

iT 3@2(s)
CdT (s)

ds
D2

ergs cm~3 s~1 , (17)

where the approximation on the right-hand side includes
only the linearized temperature dependence T (s). The lin-
earized temperature dependence can be written in terms of
our measured temperature gradients (dT /ds) and mean tem-
peratures listed in Table 2 byT

e
EIT

T (s) \ T
e
EIT ]

AdT
ds
BA

s [ L 1
2
B

. (18)

The conductive Ñux term in the energy balance equa-+F
C
(s)

tion (17) is calculated for s \ 0 in Table 2, having a mean of
ergs cm~3 s~1.S+(F

c
)T \ ([0.003 ^ 0.005) ] 10~3

The radiative loss term can be written in terms ofE
R
(s)

the electron density and the radiative loss functionn
e
(s)

"(T ),

E
R
(s) \ [n

e
(s)2"[T (s)] ergs cm~3 s~1 , (19)

which can be approximated with a constant value in our
relatively narrow temperature range of interest (T

e
\

0.5È2.0 MK),

"[T ] \ 10~21.94 ergs cm~3 s~1 (105.75 \ T \ 106.3) ,

(20)

as calculated by Raymond, Cox, & Smith (1976) for solar
abundances (Rosner et al. 1978 ; Fig. 10 ; and eq. [A1]). The
radiative loss rate is calculated for s \ 0 in Table 2,E

R
(s)

having a mean of ergsSE
R
T \ ( [ 0.46 ^ 0.29) ] 10~3

cm~3 s~1 for our 30 analyzed loops, surpassing the conduc-
tive loss rate by about 2 orders of magnitude (under the
assumption of a Ðlling factor of unity).

Static hydrodynamic loop models assume steady state
conditions, i.e., the heating rate has to balance the energy
losses by conduction and radiation according to equation
(16). Because we Ðnd here that the conductive loss rate is
much smaller than the radiative loss for this set of analyzed
EUV loops, the required steady state heating rate has to
balance essentially the radiative loss rate, i.e., E

H
B [E

R
.

This steady state heating rate requirement (deÐned byE
Heq. [16]) is listed in Table 2, having a mean of SE

H
T \

(]0.46 ^ 0.28) ] 10~3 ergs cm~3 s~1. Because the radi-
ative loss rate is proportional to the squared density (eq.
[19]), for which we found an exponential decrease with
height (eq. [5]), the steady state heating rate requirement
follows a similar exponential relation,

E
H
(s) B [E

R
(s) B n

e02 "(T ) exp
C

[ 2h
j(T )

D
, (21)

with an exponential scale height that equals half the density
scale height. Such an exponential heating scale height ors

H
,

heat-deposition length, has been introduced, for instance in
loop models of Serio et al. (1981),

E
H
(s) \ E

H0 exp
A

[ s
s
H

B
, (22)

which has a mean value of Mm)/2 \s
H

\ j/2 \ (55 ^ 10
28 ^ 5 Mm (see Table 1) for our group of EUV loops. This
is a very stringent requirement for the spatial distribution of
the heating function. It is very unlikely that the heating
function always adjusts to the gravitational stratiÐcation
without thermal conduction. However, because we found
that conductive loss is 2 orders of magnitude smaller than
radiative loss, the observed temperature and density struc-
ture of EUV loops can only be controlled by a combination
of heating and radiative loss. Because these two terms
cannot be balanced in a natural way, we conclude that the
observed EUV loops are not in steady state and thus cannot
be explained with static models.

Coronal loops in steady state conditions have also been
simulated numerically, where solutions of the static energy
equation yield the result that the conductive energy loss is
about equivalent to twice the radiative loss (e.g., Vesecky,
Antiochos, & Underwood 1979). Consequently, for loops in
steady state condition, the heating rate, the conductive loss,
and the radiative loss are all of about the same order. The
fact that we Ðnd the conductive loss to be 2 orders of magni-
tude smaller than radiative loss violates this rule of thumb
for steady state condition. Therefore, we conclude that the
observed EUV loops are not in steady state condition but
rather in a cooling phase, far o† the equilibrium.

3.3. L oop L ifetime
To investigate the lifetime of loops we have to consider

the fastest of the energy loss timescales. The conductive loss
time,

qcond \ Eth
dE

C
/dt

\ 3n
e
k
b
T
e

+F
C

B 1.1 ] 10~9n
e
T ~5@2L 02 [s] ,

(23)

is found to be s (or 10 days), using theqcond B 9 ] 105
average parameters from Table 1, cm~3,n

e
\ 1.92 ] 109

K, and cm. TheT
e
EIT \ 1.22 ] 106 L 0 \ L /2 \ 2.2 ] 1010

conductive loss time of EUV loops is therefore substantially
longer than for SXR loops, for two reasons (1) the tem-
perature is cooler, and (2) the loop length is somewhat
larger. If we compare typical SXR loops as observed with
Y ohkoh/SXT, where typical temperatures of MK,T

e
SXR \ 5

densities of cm~3, and loop lengths ofn
e
\ 3 ] 109

LSXR \ 1010 cm were measured (Kano & Tsuneta 1995), we
Ðnd conductive loss times of s (or 2.4 hr).qcondSXR B 8 ] 103
The huge di†erence in the conductive loss times of EUV
and SXR loops comes mainly from the temperature factor,
(T SXR/T EUV) B 5, which raised to the T ~5@2 power yields a
ratio of

qcondEUV
qcondSXR B

AT EUV
T SXR

B~5@2
B 55 , (24)

i.e., the conductive loss time is about 55 times longer for
EUV loops than for SXR loops.

Let us now estimate the radiative loss time of EUV loops
(under the assumption of a Ðlling factor of unity). The radi-
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ative lifetime is

qrad \ Eth
dE

R
/dt

\ 3n
e
k
b
T
e

n
e
2 "(T

e
)

, (25)

yielding a mean lifetime of s or about 40qrad B 2.3 ] 103
minutes, based on our mean values Sn

e
T \ 1.92 ] 109

cm~3, MK, and "(T ) \ 10~21.94 ergs cm~3ST
e
T \ 1.22

s~1. Comparing the radiative lifetime of EUV loops with
SXR loops, there is less of a di†erence than for the conduc-
tive loss time. This similarity is because the mean electron
densities are comparable, i.e., cm~3 versusn

e
EUV B 2 ] 109

cm~3 (Kano & Tsuneta 1995), and the radi-n
e
SXR B 3 ] 109

ative loss function has only a slightly smaller value at SXR
temperatures, i.e., "(T EUV) B 10~21.94 ergs cm~3 s~1 (eq.
[17]) versus "(T SXR) B 10~22.18 ergs cm~3 s~1 (Kano &
Tsuneta 1995), whereas the temperatures di†er by a linear
factor T SXR/T EUV B 5. The ratio of radiative loss times
between EUV and SXR loops is therefore mainly deter-
mined by the temperature ratio,

qradEUV
qradSXR B

AT EUV
T SXR

B
B 0.2 , (26)

yielding a radiative cooling time of s (or about 3qradSXR B 104
hr) for SXR loops. The mean physical loop parameters of
EUV and SXR loops and the resulting timescales are also
summarized in Table 3 for convenience.

From these average physical parameters of our 30
analyzed EIT loops we Ðnd therefore that the conductive
cooling time is at least 2 orders of magnitude larger than the
radiative cooling time, a result that we have already noticed
by comparing conductive loss rates versus the radiative loss
rates in Table 2. This extreme ratio for EUV loops is in
marked contrast to SXR loops, where the ratio qcondSXR /qradSXR \
8 ] 103/104 B 1 is close to unity if we use the mean loop
parameters of Kano & Tsuneta (1995). An even greater dif-
ference was found by Porter & Klimchuk (1995) and Priest
et al. (1998), who measured ratios >1 for individual SXR
loops. Note that, for many of these loops, the ratio may
actually be near unity if we allow for the possibility of small
Ðlling factors (see ° 3.5). It is therefore possible that a major-
ity of SXR loops are in quasi-static equilibrium. This is
deÐnitely not the case for the EUV loops, since small Ðlling
factors make the discrepancy between the radiative and
conductive loss rates even larger. The ratio of conductive to
radiative cooling times of EUV loops is even more di†erent
with respect to large-scale SXR loops, where the opposite
ratio was found, i.e., the conductive loss being 2 orders of
magnitude stronger than radiative loss (Priest et al. 1998).

We have only limited information on the real lifetime of
the analyzed loops. A lower limit is constrained by the radi-
ative cooling time, amounting to 40 minutes at the loop
base. The real lifetime can be a few times longer, if radiative
cooling is partially balanced by heating. However, the real
lifetime cannot be much longer than the radiative cooling
time because the required heating function would then have
to be extremely Ðne tuned close to the steady state condi-
tion, which is implausible without the e†ect of thermal con-
duction. Based on this argument we conclude that the real
lifetime cannot exceed a few radiative cooling times, say a
few hours. This conclusion is somewhat supported by the
localization capability of our dynamic stereoscopy method.
The stereoscopic correlation over time intervals of ^24 hr
clearly shows spatial displacements of loops. It is therefore
conceivable that the heating function is not cospatial over
24 hr, but rather spreads over multiple neighbored Ðeld
lines, where individual loop strands cool o† on timescales as
short as the radiative cooling time (B40 minutes). Short-
term Ñuctuations in MK on the order of 5È10T

e
[ 1.0

minutes were also reported by Habbal, Ronan, & Withbroe
(1985). A conceivable scenario is quasi-periodic microÑare
heating as simulated by Peres (1997).

3.4. L oop Scaling L aws
Scaling laws have been derived among physical loop

parameters (such as the temperature the loop pressure p,T
e
,

the loop length L , the steady state heating rate requirement
[in a steady state model], and the magnetic Ðeld B), toE

Htest the internal self-consistency of the energy balance equa-
tion for a given set of observed loops. We show the relation-
ships between these parameters in the form of correlation
plots for our sample of 30 EUV loops in Figure 14, includ-
ing the loop length L , the loop base pressure p0 \ p(h \ 0),
the steady state heating rate at the footpoint E

H0 \ E
H
(h \

0), and the magnetic Ðeld at the footpoint. The foot-Bfootpoint Ðeld strengths have been measured from theBfootMDI magnetogram by taking the maximum Ðeld values
among the nearest MDI pixels to the EIT loop footpoints
(see values of listed in Table 2).3 We omit correlationsBfootwith the temperature because this parameter is almost con-
stant for our data set. Linear regres-(T

e
EIT \ 1.21 ^ 0.06)

3 The cautious reader may make a distinction between a photospheric
and coronal footpoint deÐnition, which can be related using Ñux conserva-
tion as in case of a canopy-like divergence fromSBcorTrcor2 \ SBphotTrphot2 ,
photospheric Ñux tube radius to coronal footpoint radius Thisrphot rcor.e†ect is not considered here.

TABLE 3

COMPARISON OF MEAN PHYSICAL LOOP PARAMETERS IN EUV AND SXR

EUV SXR
Parameter (This Work) (Kano & Tsuneta 1995, 1996)

Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cool loops Hot loops
Observations . . . . . . . . . . . . . . . . . . . . . . . . . SOHO/EIT 171 A� Y ohkoh/SXT
Electron temperature T

e
(MK) . . . . . . 1.2 5

Electron density n
e0 (cm~3) . . . . . . . . . 2 ] 109 3 ] 109

Loop half-length L (cm) . . . . . . . . . . . . . 2 ] 1010 1 ] 1010
Loop pressure p0 (dyne cm~2) . . . . . . 0.6 4
Conductive loss time qcond (s) . . . . . . . 9 ] 105 8 ] 103
Radiative loss time qrad (s) . . . . . . . . . . . 2 ] 103 1 ] 104
Ratio qcond/qrad . . . . . . . . . . . . . . . . . . . . . . . 450 1
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FIG. 14.ÈScaling laws between the steady state heating rate requirement loop base pressure loop length L , and magnetic Ðeld strength forE
H0, p0, Bfootour sample of 30 EUV loops. Linear regression Ðts are indicated with solid lines, the standard deviations of the slopes are marked with dashed lines.

sion Ðts reveal the following correlations

p0 P L~0.41B0.12 , (27)

B P L~1.02B0.43 , (28)

E
H0 P L~0.73B0.23 , (29)

E
H0 P p01.89B0.07 . (30)

We do not Ðnd a signiÐcant correlation between the loop
pressure and the magnetic Ðeld (Fig. 14, middlep0 Bfootright), or between the heating rate and the magneticE

H0Ðeld (Fig. 14, bottom right).BfootFirst, let us discuss the scaling between loop pressure and
loop length. From the analysis of SXR loops (Porter &
Klimchuk 1995 ; Klimchuk & Porter 1995), a power-law

index of [ 1.82 ¹ b ¹ [0.22 (90% conÐdence range) was
found for the correlation This result is consistentp0 P Lb.
with our Ðndings from EUV loops, with b \ [0.41 ^ 0.12
(1 p standard deviation, eq. [27]). The theoretical interpre-
tation of this value b depends on the heating deposition
length in the context of a speciÐc heating model. In the
simplest case where the heating source is localized in a point
source and does not depend on any other physical param-
eters, i.e., the same amount of thermal energy is deposited in
loops of di†erent lengths, the volumetric heating rate would
scale as If we additionally assume that theE

H
P L~1.

heating rate has to balance the radiative loss, asE
H

P p2,
supported by the observed correlation (eq. [30]), then the
pressure is expected to scale with loop length by p0 P L~0.5,
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or b \ [0.5, for one-dimensional loops. This is consistent
with our observed relation (eq. [27]).p0 P L~0.41B0.21

Second, we discuss the physical interpretation of corre-
lations with the heating rate Inserting the deÐnition ofE

H0.
the loop base pressure p0,

p0 \ p(h \ 0) \ 2n
e0 kB T

e
EIT , (31)

into the steady state heating rate that is required toE
Hbalance the dominant radiative loss (eq. [21]), we Ðnd[E

Rimmediately

E
H0 P n

e02 B p02 , (32)

since the temperature as well as the radiative lossT
e
EIT,

function "(T ), can be approximated by a constant for the
given data set. This explains, by deÐnition, the correlation
found for EUV loops (eq. [30]). Such a dependence (E

H0 P
p2) was also inferred for soft X-ray bright points
(Kankelborg, Walker, & Hoover 1997). Note that this
scaling law is distinctly di†erent from that derived by
Rosner et al. (1978), or Galeev et al. (1981),

E
H0 B 105p07@6L 0~5@6 , (33)

which was derived under the assumption of quasi-static
equilibrium, in which radiative and conductive losses are
necessarily comparable (e.g., Vesecky et al. 1979). The same
applies to the generalized scaling law of Serio et al. (1981),
who account for a nonconstant pressure p(h), parametrized
by a pressure scale height and a heading deposition scales

pheight s
H

,

E
H0 B 105p07@6L 0~5@6 exp

C
0.5L

A 1
s
H

[ 1
s
p

BD
. (34)

Also Kano & Tsuneta (1996) derived an energy scaling law
by equating radiative and conductive energy loss, for the
special case of the heating source is located at the loop top,

E
H0 \ 4.0 ] 103(p0 T

m
1@2)L 0 ergs cm~3 s~1 (35)

with the maximum temperature at the loop top. Simi-T
mlarly, Ofman, Klimchuk, & Davila (1998) derive a heating

rate scaling law for resonant absorption of wavesAlfve� n
under the assumption of quasi steady state equilibrium.
Consequently, because all these energy scaling laws are
based on the assumption of quasi-static equilibrium, in
which radiative and conductive losses are necessarily com-
parable, they are not applicable to our set of EIT loops,
where conductive loss is completely negligible compared
with the radiative loss.

Third, we discuss the physical meaning of correlations
with the magnetic Ðeld. For models where loop heating is
accomplished by dissipation of magnetic energy (e.g., nano-
Ñare heating model of Parker 1988), one would expect a
relation which is not consistent with our ÐndingsE

H
P B2,

because we did not Ðnd any signiÐcant correlation between
and (Fig. 14, bottom right). In many coronal heatingE

H
Bfootmodels, the dissipated energy depends also on the loopE

Hlength L . It is then useful to investigate the speciÐc depen-
dence of the magnetic Ðeld B on the loop length L from
observations, e.g., speciÐed by a power law (Porter & Klim-
chuk 1995),

B P Ld . (36)

Theoretically, a power-law index of d \ [3 is expected for
a point dipole, or d \ [2 for a line dipole, in the far-Ðeld
approximation. In the near Ðeld, i.e., for Ðeld lines compara-

ble with the dipole separation, these relations are strongly
modiÐed (approaching a regime of d B 0). The distinction
between the near-Ðeld and far-Ðeld approximations should
therefore be taken into account in the application of a B(L )
relation. Klimchuk & Porter (1995) inferred that d B [0.7
by combining their P P L~1 result for SXR loops with the
Skylab result of Golub et al. (1980) that wherePAR P BAR1.6,
the subscripts refer to averages over entire active regions.
Recent work with more detailed magnetic Ðeld modeling
yields a value of d \ [0.97 ^ 0.25 (Mandrini, Demoulin, &
Klimchuk 1999). This recent value obtained from magnetic
Ðeld extrapolations of many active regions agrees very
well with the value found here from EUV loops,
d B [1.02 ^ 0.42 (eq. [28]). The value of d B [1 for both
SXR and EUV loops indicates that the observed loops
belong to the near-Ðeld regime rather than to the far-Ðeld
case. Interestingly, no correlation was found between Bfootand L for large-scale magnetic Ðelds of the global corona,
which extends out to the heliosphere (Wang et al. 1997).

3.5. L oop Filling Factors
So far we assumed a Ðlling factor of unity in our deriva-

tion of physical loop parameters. However, there is some
indirect evidence that coronal loops may consist of many
unresolved thin strands (Golub et al. 1990), which suggests
a higher electron density inside the strands than obtained
from the volume-averaged emission measure across a
macroscopic loop diameter. If we denote the true density
inside the strands with and the volume Ðlling factor ofn

e
*

strands by f, the two densities relate by

n
e
*(s) \

SEM(s)
w

z
(s)

1
f
\ n

e
(s)

Jf
. (37)

This Ðlling factor a†ects the radiative loss rate (eq. [19]),
but not the conductive loss rate (eq. [17]). Numerical solu-
tions of the static energy equation in coronal loops have
shown that the conductive energy loss to the chromosphere
is about twice as much as the radiative loss in the corona
(Vesecky et al. 1979). Based on this argument, the Ðlling
factor can be derived by equating twice the conductive loss
rate with the radiative loss rate, Porter &2+F

C
(s) B E

R
(s).

Klimchuk (1995) used this approach to infer Ðlling factors
>1 for most of the 47 SXR loops they analyzed. Several had
Ðlling factors greater than 1, an unphysical situation that
led them to conclude that those particular loops cannot be
in quasi-static equilibrium. We Ðnd a similar situation for
our EUV loops. Introducing a Ðlling factor less than 1
would increase the radiative loss rate, but not the conduc-
tive loss rate, and so the 2 order of magnitude discrepancy
that already exists would become even larger. Thus, our
conclusion that the loops are not in equilibrium seems ines-
capable. It is interesting to note that the nonequilibrium
loops of the Porter and Klimchuk study are relatively cool
at T B 2 MK. They may belong to a separate class of loops
(Cargill & Klimchuk 1997) that includes the EIT loops pre-
sented here.

3.6. Hydrostatic Equilibrium
The exponential density proÐles of our analyzedn

e
(h)

sample of EUV loops together with the Ðnding that the
resulting scale height temperature (T j \ 1.22 ^ 0.23 MK)
matches exactly the Ðlter-ratio temperature (T EIT \
1.21 ^ 0.06 MK) in the statistical average, clearly proves
that these EUV loops are in hydrostatic equilibrium. On the
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other hand we found that these EUV loops are not in steady
state condition, but are dominated by radiative cooling.
The question arises then how pressure changes due to
unbalanced heating or cooling processes can always adjust
to hydrostatic equilibrium. Pressure gradients propagate
with sound speed,

v
s
\
SckB T

e
kmH

B 1.51 ] 104JT
e

cm s~1 , (38)

which amounts to v B 165 km s~1 for the observed EUV
loops with an average temperature of MK. BasedT

e
B 1.2

on the mean scale height of j \ 55 Mm, the sound travel
time across a scale height is s, or about 5t

s
\ j/v

s
\ 330

minutes. Because this sound travel time is therefore always
much shorter than the radiative cooling time, with a
minimum value of minutes at the loop base,qrad0 B 40
increasing to minutes at a height of 1 scaleqrad(h \ j) B 110
height, pressure changes can always be adjusted to hydro-
static equilibrium, so that we expect these loops always to
be close to hydrostatic equilibrium. This is also consistent
with results based on numerical simulations of the thermal
stability. Although uniform-pressure loops were found to be
thermally unstable under some conditions (e.g., if the base
heat Ñux is too small), the inÑuence of gravity (or hydro-
static equilibrium) was found to have a stabilizing e†ect
(Wragg & Priest 1982). These arguments may partially
explain the numerous existence of hydrostatic EUV loops
observed by EIT during four solar rotations in this active
region.

3.7. A Statistical Heating Model for EUV L oops
Our measurements have shown two important Ðndings :

(1) EUV loops are in hydrostatic equilibrium, and (2) radi-
ative energy loss dominates conductive loss completely. The
second Ðnding is in strong contrast to SXR loops, which are
found to be close to steady state condition, where radiative
cooling and thermal conduction are comparable. Conse-
quently, EUV loops are far o† the steady state equilibrium,
and their temperature structure cannot be explained by
steady state models. Although it is mathematically possible
to construct a heating function that exactly balances the
radiative loss (eq. [21]), the conductive loss rate cannot be
increased (given the observed temperature gradients) to
match the radiative loss, a necessary condition for static
equilibrium. It is therefore more reasonable to invoke a
model that does not require static equilibrium, e.g., a
dynamic model with a time-dependent heating function.

Because thermal conduction is demonstratedly not essen-
tial in EUV loops, we cannot assume a single localized
heating source, e.g., at the loop top, but rather have to
assume a heating function that acts in all parts of the loop,
either uniformly or randomly distributed, but a†ecting all
parts of the loops in the temporal average. The loop can be
subdivided into multiple strands, where the heating func-
tion acts randomly in di†erent strands, or along the loop
strands (Fig. 15, top). Let us characterize such a heating
function with a fragmented topology, where each elemen-
tary heating event has a dissipation length (Fig. 15, top)l

hand occurs with a mean recurrence rate at a givenR \ 1/t
Rloop position h. The duration of the heating event has to be

shorter than the local radiative cooling time because theqradloops would cool o† faster than they can be heated other-
wise. The radiative cooling time depends primarily on the

FIG. 15.ÈCartoon of a statistical loop heating model, where heating
events are uniformly or randomly distributed along and across a loop
(possibly in di†erent loop strands) and occur cyclically with a mean recur-
rence time. Because the heated loop portions cool o† faster at the loop
footpoints (due to the shorter radiative cooling time, bottom left) than in
larger heights, i.e., at 1 scale height, h \ j (bottom right), a positive tem-
perature gradient arises in the statistical average.

density and has therefore a height dependence that is
related to the hydrostatic equilibrium, i.e.,

qrad(h) \ 3n
e
(h)k

b
T
e

n
e
(h)2"(T

e
)
B qrad0 exp

Ah
j
B

, (39)

where refers to the radiative cooling time at the loopqrad0
base (h \ 0). Since the heating timescale has to be shorter
than the radiative cooling time, we can neglect it to Ðrst
order and obtain a sawtooth-like temperature proÐle T

e
(t)

for a recurrent sequence of heating events, i.e., the loop is
heated cyclically to a temperature and cools o† with anTmaxexponential decay time (Fig. 15, bottom). Because theqradradiative cooling time increases with height due to the
hydrostatic density dependence, the loops will cool o†
slower in larger heights and thus maintain a higher tem-
perature in the temporal average. This simple model
already explains the basic mean temperature structure of
EUV loops, producing a positive temperature gradient with
height (without invoking thermal conduction). We can now
derive the mean loop temperature as a function ofST

e
(h)T

the height by averaging the time-dependent temperature
evolution during one heating cycle (the mean recurrencet

Rtime of a heating event),

ST
e
(h)T \ /0tRTmax exp [[t/qrad(h)] dt

/0tRdt

\Tmax
Cqrad(h)

t
R

DG
1 [ exp

C
[ t

R
trad(h)

DH
. (40)

Inserting the height dependence of the radiative cooling
time from equation (39) yields then the followingqrad(h)
temperature proÐle,

ST
e
(h)T \ Tmax

1
q
R

exp
Ah

j
BG

1 [ exp
C

[ q
R

exp (h/j)
DH

, (41)
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where we deÐned a dimensionless recurrence time ratio q
Rby

q
R

\ t
R

qrad0 . (42)

The average temperature gradient dT /dh over a scale height
j is then

dT
dh

B
T
e
(h \ j) [ T

e
(h \ 0)

j

\Tmax
j

1
q
R

G
e
C

1 [ exp
A

[ q
R
e
BD

[ [1 [ exp ([q
R
)]
H

,

(43)

which can be related to the measured temperature gradients
dT /ds described in ° 2.8 (see also Table 2). We see that the
temperature gradient depends only on one free model
parameter, the recurrence time ratio For very shortq

R
.

recurrence times, the temperature gradient becomesq
R

> 1,
zero because heating is almost continuous and thus main-
tains the loop temperature everywhere near and isT maxtherefore constant along the loop. On the other side, the
rarer the heating events, the more the loop will cool o†
before onset of the next heating event, and thus the steeper a
temperature gradient will arise due to the hydrostatic
dependence of the radiative cooling time. A comparison of
the measured temperature gradient with this model allows
therefore to constrain the recurrence time. We show the
theoretical temperature proÐles (eq. [41]) in FigureST

e
(h)T

16 (left), for a set of recurrence ratios . . . , 1, with theq
R

\ 0,
maximum temperature adjusted for each case in such aTmaxway that the loop base has a temperature of T

e
(h \ 0) \ 1.2

MK, as observed for our set of EIT loops. The resulting
temperature gradients dT /dh(h \ 0) at the loop base are
shown as a function of the recurrence time in Figure 16t

R(right), where we Ðnd the following behavior : (1) the tem-
perature gradient is very shallow (dT /dh \ 0.01 K m~1) for
fast recurrence times and (2) a maximum tem-(t

R
\ trad0 ),

perature gradient of K m~1 is predicted(dT /dh)max [ 0.04
for long recurrence times. We mark the observed tem-
perature gradients dT /ds in this diagram (crosses in Fig. 16,
right), to infer the recurrence times that are consistent with
the observations. We Ðnd that most of the EIT loops (20 out
of 30) have temperature gradients that require recurrence
time ratios of or recurrence times ofq

R
[ 0.25, t

R
\ q

R

minutes (based on minutes). From] qrad0 [ 10 qrad0 B 40
this model we predict that heating events should occur with
a mean rate of about 5 minutes in a given loop location to
maintain the observed temperature gradient in EUV loops.
The predicted correlation between temperature gradients
(dT /dh) and temperature Ñuctuation rates R could possibly
be checked with high-cadence EIT movies (Newmark et al.
1997).

This heating model is entirely constrained by the
observed temperature and density proÐle andT

e
(s) n

e
(s)

predicts a recurrence rate R at a given loop location. In
order to a†ect the entire length of a loop strand, the total
rate R of heating events has to be multiplied by the ratio of
the loop length L to the dissipation length of an individ-lheatual heating event,

Rstrand \ R
L

lheat
. (44)

If the loop is composed of strands, the required totalNstrandnumber of heating events scales with the ratio ofRloopstrand cross sections to the loop cross section, i.e.,

Rloop \ Rstrand
A w

wstrand

B2 \ R
L

lheat

A w
wstrand

B2
, (45)

where indicates the width of a strand. If the width ofwstrandindividual strands is very small, the total rate of heating
events becomes so large that the variability of individual
heating events cannot be resolved with currently available
time cadences, and the temperature proÐle of the loop will
appear smooth in space and time. Future investigations will
reveal whether individual heating events can be resolved or
not.

The purpose of this simple statistical heating model
without conduction is just to illustrate that the observed
temperature gradients can naturally be explained with
recurrent heating events uniformly distributed all over the
entire loop. A heating source that is conÐned to a small part
of the loop cannot explain the temperature structure of
EUV loops. For instance, a heating source localized at the
loop-top cannot balance the radiative energy loss in the
lower part of the loop (because thermal conduction is ineffi-
cient in EUV loops), an argument that was used by Neupert
et al. (1998) against the heat-deposition model at large
heights (e.g., Wheatland, Sturrock, & Acton 1997). A con-
ductionless heating model necessarily requires a heating

FIG. 16.ÈTemperature proÐles along a loop predicted by the statistical loop heating model (Fig. 15) are shown for di†erent recurrence time ratiosT
e
(h)

0.1, 0.2, . . . , 1.0 (left). The resulting temperature gradients dT /dh are shown as a function of the recurrence time ratio (right). The crosses mark theq
R

\ 0, q
Rtemperature gradients observed in the 30 EIT loops, and the resulting distribution of recurrence times is shown in the form of a histogram (insert). Notet

Rthat most of the required recurrence times are minutes.[10
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function that covers the entire loop, either uniformly or
randomly distributed (in space and time). Because a
uniform heating function requires an implausible Ðne
tuning with the hydrostatic equilibrium, we invoke a sta-
tistical heating function. At this point we leave it open
whether the statistical heating events can be interpreted by
nanoÑares (Parker 1988), by resonant dissipation of Alfve� n
waves (Ofman et al. 1998), or by cyclically driven mass Ñows
(e.g., chromospheric evaporation cycles, spicules, surges,
jets, injections). A scenario with quasi-periodic microÑare
heating has been modeled, e.g., by Cargill (1994), Cargill &
Klimchuk (1997), or Peres (1997). In the nanoÑare concept,
dominant radiation loss (with a ratio of qrad/qcond B 10~2),
as observed for the EIT loops here, would occur in the Ðnal
cooling phase of a nanoÑare event, according to a model of
Cargill (1994).

3.8. Mass Flows in EUV L oops
In the discussion of heating requirements we neglected

mass Ñows, which could play a signiÐcant role. DownÑows
were found from Doppler shift measurements at EUV tem-
peratures of MK that carry an energy Ñux compara-T

e
B 1

ble with radiative energy loss (Foukal 1978). UpÑows with
(Doppler shift) velocities of 50 km s~1 have been reported in
Mg IX and Mg X lines MK) in an active region(T

e
B 1

recently observed with SOHO/CDS (Brekke et al. 1997).
Brown (1996) performed hydrodynamic simulations of
loops that cool from an initial temperature of MKT

e
\ 2

down to temperatures of MK, with subsequentT
e
\ 0.1

heating back to the original temperatures of MK (inT
e
\ 2

cycles of 3000 s). These simulations demonstrate that down-
Ñows with velocities of 7È45 km s~1 occur during the
cooling phase due to coronal condensation.

4. SUMMARY AND CONCLUSIONS

We developed a three-dimensional analysis method
designed to determine geometric and physical parameters of
loop structures in solar EUV or SXR images. This method,
called dynamic stereoscopy, makes use of stereoscopic
correlations of dynamically evolving loop structures that
can be traced from high-pass Ðltered images. The method is
designed to separate closely spaced, nested loops, in the
plane of the sky, as well as along the line of sight, by suitable
background subtraction. With this method we analyzed
SOHO/EIT Fe IX, Fe X, and Fe XII observations of active
region AR 7986, obtained on 1996 August 30. We traced 30
loop segments of this active region and determined the
three-dimensional Cartesian space coordinates [x(s), y(s),
z(s)], the loop widths w(s), the electron density and then

e
(s),

electron temperature as a function of the loop length s.T
e
(s)

The vertical density scale height j of these loops was prop-
erly corrected for the inclination angle Ë of the loop plane to
the vertical, and the column depth of loops was cor-w

z
(s)

rected for the projection angle t(s) between the loop axis
and the line of sight, which enters the conversion of emis-
sion measures EM(s) into electron densities Fromn

e
(s).

potential Ðeld lines neighbored to the selected EUV loops
we estimated also the magnetic Ðeld B(h), the plasma-b
parameter b(h), and the velocity along theAlfve� n vA(h)
loops. The physical parameters obtained with this stereo-
scopic three-dimensional method have therefore an
unprecedented accuracy. The statistical results of geometric
and physical parameters of the analyzed 30 EUV loops of
AR 7986 are listed in Table 4.

The major Ðndings and conclusions of this analysis are as
follows :

1. The analyzed cool EUV loops are in hydrostatic equi-
librium, i.e., the mean scale height temperature is identical to
the Ðlter-ratio temperature, and the densityT

e
j B T

e
EIT,

proÐle is nearly exponential. The high accuracy of thisn
e
(h)

result could only be accomplished by proper reconstruction
of the three-dimensional loop geometry, in particular by the
stereoscopic measurement of the inclination angle Ë of the
loop planes. The existence of hydrostatic equilibrium is
physically plausible because pressure gradients can be
quickly adjusted to the gravitational scale height, since the
loop cooling times are found to be much longer than the
sound travel time across a scale height.

2. The loop width w(s) is found to be almost constant for
most of the analyzed loops. Only four out 30 loops show a
signiÐcant divergence with height, as is expected for dipolar
Ðelds. The constant thickness of EUV loops indicates the
presence of current-induced nonpotential magnetic Ðelds
(Wang & Sakurai 1998), consistent with the Ðndings from
SXR loops (Klimchuk et al. 1992). However, we cannot
make a statement about the magnitude of nonpotential
Ðelds because we measure the geometric divergence only
over a segment of 1 scale height.

3. The potential magnetic Ðeld is found to convey an ade-
quate representation of the coronal magnetic Ðeld traced
out by EIT loops in some parts of the active region, whereas
signiÐcant deviations are present in other parts. The ratio of
the thermal to the magnetic pressure is found to be always

up to the apexes of the EIT loops, warranting mag-b [ 1
netic conÐnement in all parts of the EUV loops. The Alfve� n
velocity is found to be highest near the loop footpoints and
reaches asymptotically values in the range of vA B
500È1000 km s~1 in the upper parts of the loops.

4. We Ðnd the following scaling laws between the loop
length L , the loop base pressure the footpoint magneticp0,
Ðeld and the steady state heating requirementBfoot, E

H0 :
p0 P L~0.41B0.12, Bfoot P L~1.02B0.43, E

H0 P L~0.73B0.23,
These scaling laws are distinctly di†erentE

H0 P p01.89B0.07.
from steady state loop models usually applied to SXR
loops, where radiative loss is comparable with conductive
loss, e.g., the Rosner et al. (1978) loop scaling laws.

5. The conductive loss rate is found to be about 2+F
Corders of magnitude smaller than the radiative loss rate E

Rfor these cool EUV loops, a fact that is in marked di†erence
to hot SXR loops, where it is generally the case that +F

C
B

The dominance of radiative cooling over conductiveE
R
.

cooling is mainly an e†ect of the cooler temperature of EUV
loops. As a consequence, the heating rate has to balance
only the radiative loss in steady state, implying that the
heating rate scales with the squared density, andE

H
P n

e
2,

that the heating scale height corresponds to the half-s
Hdensity scale height j, However, because a steadys

H
\ j/2.

state solution requires that radiative and conductive loss
are comparable, these cool EUV loops cannot be in steady
state equilibrium.

6. The nonÈsteady state of cool EUV loops requires a
heating function that heats uniformly or randomly along
the loops because thermal conduction from a localized
heating source is inefficient. This excludes heating models
where the heating source is strongly localized, either at the
loop top or at the footpoints. A plausible possibility is sta-
tistical heating events distributed along the entire loop that
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TABLE 4

STATISTICAL RESULTS OF GEOMETRIC AND PHYSICAL PARAMETERS OF THE ANALYZED 30 EUV
LOOPS OF AR 7986

Parameter Value

Loop radius (Mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R0 \ 93 ^ 23
O†set of circular loop center from baseline (Mm) . . . . . . Z0 \ 62 ^ 27
Loop height (Mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h \ 128 ^ 56
Loop length (Mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L \ 433 ^ 136
Length of traced loop segments (Mm) . . . . . . . . . . . . . . . . . . . L 1 \ 89 ^ 29
Loop width (Mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . w \ 7.1 ^ 0.8
Loop aspect ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L /w \ 61 ^ 20
Azimuth angle of loop baselines (deg) . . . . . . . . . . . . . . . . . . . a \ 3 ^ 10
Inclination angle of loop planes (deg) . . . . . . . . . . . . . . . . . . . . Ë \ 7 ^ 37
Base emission measure (cm~5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . EM0 \ 1027.61B0.61
Base electron density (cm~3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n

e0 \ (1.92 ^ 0.56) ] 109
Base pressure (dyne cm~2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p0 \ 0.61 ^ 0.17
Density scale height (Mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j \ 55 ^ 10
Scale height temperature (MK) . . . . . . . . . . . . . . . . . . . . . . . . . . . T

e
j \ 1.22 ^ 0.23

EIT 171/195 A� Ðlter-ratio temperature (MK) . . . . . . . . . . . T
e
EIT \ 1.21 ^ 0.06

Temperature gradient (K km~1) . . . . . . . . . . . . . . . . . . . . . . . . . . dT /ds \ 0.96 ^ 4.26
Conductive loss rate (ergs cm~3 s~1) . . . . . . . . . . . . . . . . . . . . +F

C
\ ([0.003 ^ 0.005) ] 10~3

Radiative loss rate (ergs cm~3 s~1) . . . . . . . . . . . . . . . . . . . . . . E
R

\ ([0.458 ^ 0.285) ] 10~3
Steady state heating rate (ergs cm~3 s~1) . . . . . . . . . . . . . . . E

H
\ (]0.455 ^ 0.283) ] 10~3

Conductive cooling time (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . qcond \ 9 ] 105 (10 days)
Radiative cooling time (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . qrad \ 2 ] 103 (40 minutes)
Ratio of conductive to radiative loss time . . . . . . . . . . . . . . . qcond/qrad \ 450
Magnetic Ðeld strength at footpoints (G) . . . . . . . . . . . . . . . . o Bfoot o \ 20, . . ., 230
Magnetic dipole depth (Mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h

D
B 75

Ratio thermal/magnetic pressure at footpoints . . . . . . . . . b(h \ 0) \ 0.001, . . . , 0.01
Ratio thermal/magnetic pressure at loop tops . . . . . . . . . . b(h \ 100 Mm) \ 0.04, . . . , 0.15
Alfve� n velocity at loop footpoints (km s~1) . . . . . . . . . . . . . vA(h \ 0) \ 2000, . . . , 6000
Alfve� n velocity at loop tops (km s~1) . . . . . . . . . . . . . . . . . . . . vA(h \ 100 Mm) \ 500, . . . , 1000

balance the local radiative loss. The radiative cooling time
increases with loop height because of the hydrostatic
density structure and thus leads naturally to a positive tem-
perature gradient along the loop. A mean recurrence time of

minutes for individual heating events at a given loca-[10
tion can reproduce the observed temperature gradients
measured in EUV loops. Possible candidates for such a
statistical heating function are nanoÑares, dissipated Alfve� n
waves, or mass injections.

The obtained conclusions rely on the correctness of the
density and temperature measurements, for which we
quoted accountable uncertainties. The quoted uncertainties
do not include possible systematic errors that could not be
quantiÐed in this study, such as calibration errors of the
EIT instrument, uncertainties of coronal abundances used
in the computation of the EIT response function, including
FIP e†ects of some elements, or newer calculations of the
radiative loss function (e.g., currently computed by J. Cook).
The major progress of this study lies in a more rigorous
reconstruction of the three-dimensional geometry of

coronal loops (which has virtually not been attempted in
earlier studies) and thus should provide more reliable values
of electron densities free from projection and line-of-sight
convolution e†ects. In future work we will analyze the
hotter loops MK of this active region with stereo-T

e
Z 1.5

scopic methods. A further goal is to investigate the time
variability of cool and hot active region loops, their steady
state phases, and transitions to nonequilibrium states.
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APPENDIX A

HELIOGRAPHIC COORDINATE SYSTEMS AND TRANSFORMATIONS

For analysis of observed images, for time-dependent coordinate transformations that take the solar rotation into account
(as needed in stereoscopic correlations), and for convenient deÐnitions of loop geometries we deÐne three di†erent coordinate
systems :
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Image coordinate system (x, y, z).ÈThe (x, y) coordinates refer to the x-axis and y-axis of an observed image, whereas the
coordinate (z) is orthogonal to the image, or parallel to the line-of-sight direction, deÐned positive toward the observer. The
origin (x, y, z) \ (0, 0, 0) of this coordinate system is most conveniently assumed at the Sun center position. A solar FITS
image should contain the position of the Sun center in pixel units (in FITS header CRPIX1, CRPIX2 or E–XCEN,(i

x0, j
y0)

E–Y CEN), the pixel size (*x, *y) in units or arcseconds (in FITS header CDEL T 1, CDEL T 2), and the solar radius in pixeli
r0units (in FITS header SOL AR–R, or E–XSMD, E–Y SMD if the semidiameters of an ellipse are Ðtted). With this information,

a pixel position (i, j) can then be converted into the coordinate system (x, y) by

x
i
\ *x(i [ i

x0) , (A1)

y
i
\ *y( j [ j

y0) , (A2)

where *x \ arcseconds pixel~1 for (x, y) in units of arcseconds, or with km, if physical length*x \ R
_

/i
r0, R

_
\ 696,000

units (km) are preferred.
Heliographic coordinate system (l, b, r).ÈThe heliographic coordinate system is corotating with the solar surface. A position

on the solar surface is generally speciÐed by heliographic longitude and latitude coordinates (l, b) (in units of heliographic
degrees), with reference to the Carrington rotation grid. The heliographic longitude and latitude of the Sun center[l0(t), b0(t)]
and the position angle P(t) of the solar rotation axis for a given time t are published in The Astronomical Almanac (Nautical
Almanac Office, NRL, Washington DC). The two-dimensional spherical coordinate system (l, b) can be generalized into a
three-dimensional coordinate system by incorporating the height h above the solar surface, which can be expressed as a
dimensionless distance to the Sun center (in units of solar radii),

r \
A

1 ] h
R

_

B
. (A3)

The transformation from the three-dimensional heliographic coordinate system (l, b, r) into image coordinates (x, y, z) can be
accomplished by applying a series of four rotations to the (normalized) vector (0, 0, r) (see also Loughhead, Wang, & Blows
1983),

(
t
:
t
t

x/R
_

y/R
_

z/R
_

)
t
;
t
t\

(
t
:
t
t

cos (P ] P0) [sin (P ] P0) 0
sin (P ] P0) cos (P ] P0) 0

0 0 1

)
t
;
t
t
(t:

1 0 0
0 cos b0 [sin b0
0 sin b0 cos b0

)
t
;
t
t

(t:
cos (l0 [ l) 0 [sin (l0 [ l)

0 1 0
sin (l0 [ l) 0 cos (l0 [ l)

)
t
;
t
t
(t:

1 0 0
0 cos[b [sin[b
0 sin[b cos[b

)
t
;
t
t
(t:

0
0
r

)
t
;
t
t , (A4)

where are the heliographic longitude and latitude of the Sun center, P is the position angle of the solar rotation axis(l0, b0)
with respect to the north-south direction (deÐned positive toward east), and is the image rotation (roll) angle with respectP0to the north-south direction for images rotated to solar north). In stereoscopic correlations, only the longitude of(P ] P0 \ 0
the Sun center, is time-dependent in Ðrst order (according to the solar rotation rate), whereas and P(t) are slowlyl0(t), b0(t)
varying and thus almost constant for short time intervals.

L oop plane coordinate system (X, Y , Z).ÈTo parametrize coronal loops it is also convenient to introduce a Cartesian
system that is aligned with the loop footpoint baseline (X-axis) and coincides with the loop plane (X-Z plane, Y \ 0). For
instance, a circular loop model deÐned in the X-Z plane is speciÐed in equations (10)È(11). The transformation of loop
coordinates (X, Y \ 0, Z) into Cartesian coordinate system (X@, Y @, Z@) that is aligned with the heliographic coordinate system
(l, b, r) can simply be accomplished with help of two rotations,

(
t
:
t
t

X@
Y @
Z@

)
t
;
t
t\

(
t
:
t
t

cos a [sin a 0
sin a cos a 0

0 0 1

)
t
;
t
t
(t:

1 0 0
0 cos Ë sin Ë
0 [sin Ë cos Ë

)
t
;
t
t
(t:

X
Y
Z

)
t
;
t
t , (A5)

where the azimuth angle a denotes the angle between the loop footpoint baseline and the east-west direction and Ë represents
the inclination or tilt angle between the loop plane and the vertical to the solar surface (Fig. 2). Placing the origin of the loop
coordinate system [X \ 0, Y \ 0, Z \ 0] (which is also the origin of the rotated coordinate system [X@ \ 0, Y @ \ 0, Z@ \ 0]
at heliographic position at an altitude above the solar surface, the transformation into heliographic coordinates is(l1, b1) hFootthen given by

(
t
:
t
t

l
b
r

)
t
;
t
t\

(
t
:
t
t

l1 ] arctan [X@/(Z@ ] hfoot ] R
_

)]
b1 ] arctan [Y @/(Z@ ] hfoot ] R

_
)]

J[X@2 ] Y @2 ] (Z@ ] hfoot ] R
_

)2]/R
_

)
t
;
t
t . (A6)
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APPENDIX B

LINE-OF-SIGHT CORRECTION ON LOOP COLUMN DEPTH

Column depth of loops with constant cross section.ÈIn order to convert observed emission measures EM(x, y) \
y, z) dz into local electron densities y, z) we need information on the column depth / dz. An approximation that is/ n

e
2(x, n

e
(x,

often useful is coronal loops with a constant cross section w, which can be measured from the FWHM as it appears
perpendicular to the line of sight in the plane of the sky. For three-dimensional models of loops parametrized by coordinates

the angle t between the line of sight and a loop segment can then directly be derived by the ratio of the projected to(x
i
, y

i
, z

i
),

the e†ective length of a loop segment [i, i ] 1].
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yielding the column depth along the line-of-sight axis z,w
z
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