
Solar Physics
DOI: 10.1007/•••••-•••-•••-••••-•

A Rapid, Manual Method to Map Coronal-Loop

Structures of an Active Region Using Cubic Bézier
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Abstract A rapid and flexible manual method is described which maps in-
dividual coronal loops of a 2D EUV image as Bézier curves using only four
points per loop. Using the coronal loops as surrogates of magnetic-field lines, the
mapping results restrict the magnetic-field models derived from extrapolations
of magnetograms to those admissible and inadmissible via a fitness parameter.
We outline explicitly how the coronal loops can be employed in constraining
competing magnetic-field models by transforming 2D coronal-loop images into
3D field lines. The magnetic-field extrapolations must satisfy not only the lower
boundary conditions of the vector field, the vector magnetogram, but also must
have a set of field lines that satisfies the mapped coronal loops in the volume,
analogous to an upper boundary condition. This method uses the minimization
of the misalignment angles between the magnetic-field model and the best set of
3D field lines that match a set of closed coronal loops. The presented method is
an important tool in determining the fitness of magnetic-field models for the solar
atmosphere. The magnetic-field structure is crucial in determining the overall
dynamics of the solar atmosphere.

Keywords: Magnetic fields, Models; Magnetic fields, Corona; Active Regions,
Magnetic Fields; Chromosphere, Models; Instrumentation and Data Manage-
ment

1. Introduction

Solar images have always been important in acquiring an understanding of the
physics of the Sun. From the first photographic images of the solar corona
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in 1851, to Hale’s spectroheliograph chromospheric images of 1891, to Lyot’s
coronograph images of 1931, to Skylab’s X-ray images of 1973, and to today’s
Solar Dynamics Observatory’s images, the image analysis has played a pivotal
role in the development of solar physics. Starting in April 2010, the operation of
the Solar Dynamics Observatory, with its two primary imaging instruments of
the extreme ultraviolet (EUV) multiplewavelength spectroheliograph, the Atmo-
spheric Imaging Assembly (AIA) and the combined vector magnetograph and
Dopplergraph instrument, the Helioseismic and Magnetic Imager (HMI), have
provided unparalleled observations of the magnetically dominated structure of
the solar atmosphere (Lemen et al., 2012; Schou, 2012). In particular, the coro-
nal loop structures in the solar atmosphere are clearly defined by AIA at high
resolution (1.5 arcsec) and high temporal cadence of (1 image/ 12 second) over
the EUV spectral range (9.4– 33.5 nm) using a set of spectral filters covering
a temperature range of 0.06–20 MK (Aschwanden and Boerner, 2011; Reeves
and Golub, 2011; Chamberlin, Pesnell, and Thompson, 2012). HMI provides
photospheric vector magnetograms every 90–135 seconds, and is normally aver-
aged into 12-minute products. The HMI data provide the base magnetic field
for the corona, as well as dopplergrams and continuum filtergrams (Scherrer et
al., 2012). Use of the AIA data to define precisely the loop structures, which are
surrogates for magnetic-field lines, provides a definitive diagnostic for admissible
and inadmissible magnetic field solutions.1 The magnetic-field models for the
solar atmosphere are decisive and crucial in determining the overall dynamics of
the atmosphere leading to flares and coronal mass ejections and the form of the
outflowing solar wind. The geometry of the magnetic-field lines can be used i)
to determine the variability of the magnetic-field strength with height which is
important in determining the plasma β ratio, ii) to understand the non-potential
magnetic structures of the solar atmosphere which is critical in estimating the
magnetic free energy, iii) to study the open/closed topology of the magnetic field
by defining the foot points of the field lines and specifying the open field lines,
and iv) to constrain the possible magnetic reconnection scenarios in the corona.

To date, the best method to delineate the coronal structures in an active
region employing EUV imagery is through a manual method of tracing each
curvilinear feature, even though extensive research has been carried out into
automating the process (Aschwanden et al., 2008; Aschwanden, 2010). This
manual success is due to the exceptional mental process of being able to recognize
in context a single loop in a complex image where the unshaped, overlaying,
and discontinuous loops may have low contrast and ill-defined endpoints; albeit
with personal biases. In this article, we exploit this manual process of visual
recognition by introducing an easy curve-matching process. This method uses
only four points per loop, which are moved through a simple user-interaction
process allowing the curve to be rapidly overlaid onto the selected loop in an

1The new orbiting solar instrument, the Interface Region Imaging Spectrograph (IRIS),
launched 27 June 2013, will provide additional UV images with an increased spatial resolution
of 0.33–0.40 arcsec with a 2 × 2 arcmin2 FOV. IRIS data will be important in showing the
local heating locations at the base of the coronal loops and in improving our understanding of
the interface between the photosphere and corona. (iris.lmsal.com)
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image. The total resulting curve is stored by using only four coordinate points:
the control points. The interactive computer process is implemented to allow
various co-spatial magnetograms and EUV filtergrams to be viewed sequentially.
This improvement allows the recognition of the overall loop structure by studying
the loops at various emission temperatures, and allows the loop identification to
include information on the arrangement of the underlying photospheric magnetic
flux. The use of photospheric and chromospheric images also helps determine
the tentative location of the coronal foot points by allowing the selection to be
consistent with magnetic features and lower atmospheric emission features at
the end points of the loop. The rationale of this approach is discussed in the
following sections.

2. Parametric Bézier Curve

A coronal loop in a EUV image is seen as a curvilinear feature in the projected
two-dimensional image plane. These enhanced coronal loop features trace the
magnetic field that contains the EUV-emitting plasma. They appear distinct in
the EUV images because the pressure is enhanced by about ten times over the
ambient pressure and have plasma temperatures between 104–106 K, and, in
the common closed form, span from positive to negative magnetic-field regions
(Priest, 1982; Aschwanden, 2001; Aschwanden, 2002). Because the magnetic
pressure dominates the plasma pressure, the coronal features trace the curve
of the magnetic-field lines (Gary, 2001). The closed magnetic loops in an active
region are generally the brightest due to the plasma trapping of the magnetic
field. As a mathematical construct, the center of these loops is a locus of a
point moving with one degree of freedom, e.g. u, along the curve. The geometric
modeling of the curves can be efficiently described by parametric equations
(Klimchuk et al., 1992; Klimchuck, 2000). In 2D, the curves are described by
the functions x = x(u) and y = y(u) of a parameter u, which allows lines
tangent to the coordinate axes, bounded lines, and lines independent of the
image coordinate systems. One class of parametric curves is the Bézier curves.
We refer the reader to Mortenson (1997) for a detailed discussion of these curves
and their general properties.

The major advantages of using Bézier curves to map the coronal features
are: i) they provide a method to change the shape of the curve with only a
few parameters in order to match a coronal loop, ii) the variation of the simple
parameters changes the shape of the curve in a predictable manner, iii) the
curve automatically starts and ends at the user-defined foot points, and iv) the
curves and their derivatives with respect to the parameter u, exists and can be
determined at every point along the curve by a simple analytic equation. Given a
value of u (0 ≤ u ≤ 1), a position point (X(x, y)) along the curve is determined.
The predictable nature of the changes in the curve is due, in part, to the Bézier
curve being invariant under affine transformations (combinations of translation,
rotation, scaling, or shear) and there is has a simple geometric algorithm (the
de Casteljau construction, (Mortenson, 1997)) for constructing the curve.
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Figure 1. An example of a using cubic (n = 3) Bézier curve to fit a coronal loop on a SDO
AIA 171 filtergram taken in the northern area of the active region AR 11117 on 25 October
2010. From frames A to F, the control points are moved to have the curve match the loop
captured in frame F. The field of view is ≈ 4.5× 5.3 arcmin2.

The general 2D Bézier curve of degree n can be written in the form:

X(x, y) = f(u) =

n∑
i=0

Pi+1 βn,i(u), u ∈ [0, 1], (1)

where βn,i is the nth-degree polynomial basis function, the Bernstein polynomi-
als,

βn,i(u) =
n!

i!(n− i)!
ui (1− u)n−i, (2)

and Pj (j = 1, . . . , n+ 1) are position vectors (xj , yj) called control points and
are the vector parameters that control the shape of the curve (Mortenson, 1997,
Equation (4.2)) [n.b. In this article, Pj indexing starts with 1, this is different
from Mortenson’s indexing, which starts from 0.] The Bézier curves interpolate
between the first and last control points and are tangent to the first and last sides
of an open polygon formed by connecting the Pj(x, y) points. The Bézier curve
lies within the convex hull of the polygon control points (as shown in Figure 1).

We can generally restrict the curves that trace projected coronal loops to the
class of cubic (n = 3) Bézier splines. The essence of this assumption is that the
coronal loops show normally at most one inflection point, which can be handled
by the cubic Bézier curve. We will later quantify this assumption by comparing
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Bézier curve approximations to a set of field lines generated for an active re-

gion by a magnetic-field solution extrapolated from a solar magnetogram. The

parametric cubic Bézier curve is given explicitly by

X(x, y) = f(u) = (1− u)3 P1(x1, y1) + 3u (1− u)2 P2(x2, y2) +

3u2 (1− u) P3(x3, y3) + u3 P4(x4, y4), (3)

where P1 and P4 are the control points associated with the coronal-loop foot

points under the appropriate assumption which are to be described. For sim-

plicity, the curves for the coronal loops are assumed non-segmented, i.e. non-

composite curves. However, if necessary, high-order curves can be accommodated

by a composite of cubic Bézier curves joined end to end. In this case, the control

points at the joints are joined preserving the position and tangent continuities.

To improve loop recognition, high spatial-frequency image filtering or image

time-differencing techniques could be implemented to help delineate the coronal

loops. However, our current method does not apply these methods, to avoid

inducing artifacts. For example, a few observed coronal-loop features might be

artificially generated by line-of-sight integration effects of overlapping coronal

objects, but even these would be shaped by the magnetic-field structures in the

low-plasma-β corona (Gary, 2001). We assume each visible loop is a magnetic-

field surrogate and use un-enhanced imagery.

Figure 1 shows a sequence of six images in which the cubic Bézier control

points are moved, until in frame F the curve visibly overlays a loop in the AIA

171 Å filtergram. As the line segments or the open polygons formed by the four

points P1,P2,P3, and P4 expand from a straight line to embrace the 171 Å loop

which is captured in the last frame, the points P1 and P4 are placed at the foot

points and initially P2 and P3 are placed at equal distances between the end

points. Then, the points P2 and P3 are moved outward along the two tangent

lines at the nearest foot points, respectively. The length of the resulting curve is

given by

L =

1∫

0

|
∂f(u)

∂u
| du, (4)

which can be evaluated numerically (Bancisk and Juhasz, 1999). For Figure

1(f), the coronal-loop arclength L is 190 arcsec or 137 Mm, which is about 100

times the cross-sectional width of the loop. For a particular point on the coronal

loop, the tangent vector is T = dX(x, y)/ ds where the s is the differential of

arclength, ds = (dx2+dy2)1/2. For Bézier curves, the normalized tangent vector

can be written as

T =
∂f(u)
∂u

| ∂f(u)
∂u |

, (5)
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where,

∂f(u)

∂u
=

n∑
i=0

[Pi+2 −Pi+1] βn−1,i(u). (6)

Equation (6) allows one to calculate equally spaced steps along a Bézier curve,
even though equal steps in u are not equal Euclidian steps. The normal vector
is N = κ−1 dT/ ds, where κ is the curvature or the reciprocal of the radius of
curvature, ρ = κ−1 = | [1 + (dy/dx)2]3/2 / d2y/dx2 |. The average radius of
curvature is

ρave =
1

L

L∫

0

ρ(s)ds. (7)

For this example, ρave = 86 arcsec or 63 Mm (with ρmin = 28 Mm). The
width of the coronal loop, two arcsec, is only 2% of the arclength (Aschwanden
and Boerner, 2011). By visual inspection, the peak-to-peak error in fitting is
estimated to be about the same value. This value is typical of the fitting that is
achieved by this manual method.

In order to estimate the errors of using a cubic Bézier curve to map the center
line of the coronal loop, we will assume that the variety of coronal-loop structures
can be approximated by a set of potential field lines. This then allows the loop
coordinates to be numerically compared to a Bézier fit. A computer algorithm
was implemented to determine the control points P2 and P3 that minimizes the
difference between a cubic Bézier curve and a known magnetic-field line. The
process starts with having P1 and P4 at the foot points (or end points) of the
field lines. The cubic Bézier curve fit is found by varying the respective two
middle control points, P2 and P3, along the nearest foot-point tangents, P′

1 and
P′

4, such that the distances between equally spaced points on the coronal loop
(field line) and the Bézier curve are minimized in the root-mean-square sense.
Two Euclidian distances, [ǫ2 and ǫ3], are introduced such that ǫ2 is the distance
between P2 and P1 along the field-line tangent at P1, and ǫ3 is the distance
between P3 and P4 along the field-line tangent at P4. The placement of P2 and
P3 is then generated by minimizing the square root of the sum of the squared
differences between equally divided points [α] on the Bézier curve [f ] and the
field line [r] loops, as a function of ǫ2 and ǫ3,

χ = [
1

m

m∑
α=1

[f(uα, ǫ2, ǫ3)− rα]
2 ]1/2. (8)

This determines the best fit for a Bézier curve to the potential-field line.
To quantify the use of the cubic (n = 3) Bézier curve over higher-degree

curves, we use the above minimization process to compare the differences be-
tween the cubic curves and a series of field lines generated from a known magnetic
field configuration. The magnetic field is a ten-dipole fit to the longitudinal
magnetogram of AR 11117. The parameters of the ten dipoles, (i.e. dipole
magnetic-field strengths and locations) are determined by minimizing the RMS

SOLA: MappingCoronalLoopStructuresRevision3.tex; 5 July 2013; 9:06; p. 6



Mapping Coronal Structures

Table 1. Statistical study of the suitability of the cubic Bézier curves to
map magnetic fields. The potential-field loop of length L in arcsec is given
with the mean RMS error and the percent deviation of RMS/L.

Loop Length [arcsec] RMS Fit % Deviations Number of Loops

40–90 0.48 0.60 73

100–149 1.67 1.38 41

150–199 3.87 2.21 29

200–299 8.44 3.40 11

300–409 16.95 4.49 5

differences between the sum of longitudinal magnetic field at the photosphere
of the set of dipoles and the planar longitudinal magnetogram. Applying the
minimization procedure to a set of randomly generated field lines, the curve-
fitting results are shown in Figure 2 and are given in Table 1. These data imply
that the single cubic Bézier curve is sufficient for most studies. The RMS error
of Equation (8) of the Bézier curve fit is less than 5% of the length of the
curve. Only when there is a large (90◦) kink in the 2D image of the loop is
there difficulty in matching the loop with a single cubic Bézier curve, and in
the manual process this mismatch is quickly determined. The RMS fit error of
5% is comparable to the 4.5 Mm width of the a typical 100 Mm coronal loop
observed by Transition Region and Coronal Explorer,(TRACE) (Aschwanden
and Boerner, 2011). Hence it is expected that the cubic Bézier curve can be
fitted within the width of the observed loop. Of course, a composite curve could
be implemented if higher criteria are required.

As a result of obtaining a cubic Bézier fit to a coronal-loop image, one can
extend the process to extract the coronal-loop pixels and straighten out the
loop. This straightened loop can be used to study i) the fitness of the loop to the
curve, i.e., to determine how straight the coronal loop is when the Bézier curve is
straightened out, ii) the cross-sectional characteristics of the coronal loops, and
iii) the influence of the near-by and cross-cutting loops (Klimchuk et al., 1992).
This analysis using the straightened loop is to be discussed later but here we
discuss the extraction and straightening process. The technique generates two
curves parallel to the cubic Bézier fit on opposite sides of the loop.

Figure 3, frame A, shows, at a specific parameter value, [u], the normal vector
direction to the field line, N/‖ N ‖, and the tangent vector, T/‖ T ‖. If we
extend the normal direction out in both directions along the curve we obtain
two parallel lines (frame B). The respective Bézier curves, fupper(u) and flower(u),
for these two lines can be obtained from Equation (3), where the values of the
corresponding parametric values, [ua and ub], for two selected middle control
points, [Pa and Pb], for the upper and lower curves, are known.

These two parallel cubic Bézier curves can be subdivided into segments by
using the parametric values ui = i/M, i = 0, ..,M . The individual widths of the
subdivided segments of the fit are not all the same since the arclength is not
a linear function of u. This division is shown in frame C, with one segment
highlighted in yellow and with M = 100. The four quadrilateral corners of
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Figure 2. Cubic Bézier curves (black) are fitted and compared to the potential magnetic-field
lines (light gray) for the active region AR 11117 using a ten-dipole fit to the HMI magnetogram
(25 Oct 2010, 20:58 UT) (background). The background magnetogram (5 by 5 arcmin2)
is in false-color with red showing the direction of the field toward the observer
and blue away from the observer.

a b

d

c e

Figure 3. The process of straightening the cubic Bézier curve (a) by generating two parallel
lines (b) and segmenting the region into equal steps of the parametric equation (c). An example
of a gridded 10×10 segment of the Bézier path (d) with its irregular quadrilateral shape which
is translated into a rectangle form (e) in the loop-straightening process. In frame(a), the
normal vector direction to the field line is blue and the tangent vector is orange.
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a segment are given by fupper(ui), flower(ui), fupper(ui+1), and flower(ui+1).
The collection of segments can be straightened by making each segment into
rectangles with a width of the arclength distance of the segment, and the height
is the fixed distance between the outer parallel Bézier curves as shown in frame
D.

The curved segments, Figure 3(c), do not have parallel sides and are not
oriented normal to the image plane axes; hence the image points associated
within these segments must be calculated by breaking the area down via a linear
interpolation of each of the four sides. A resultant 10× 10 grid is shown in the
example given in Figure 3(d) for a segment. We use these straightening and curve
fitting techniques as major elements for fitting and checking the Bézier curve
fits. Although not yet implemented, an additional improvement in our method
could use this straightening segment and perform a cost-function analysis for
fine adjustments of the placement of the middle control points (Conlon and
Gallagher, 2010). The selection of coronal-loop foot points are discussed next.

3. Determining the End Points - The Foot Points

Because the coronal-heating process remains unknown, there are many proposed
coronal-heating models. Aschwanden lists a set of coronal-heating models broken
down into eight subgroups (Aschwanden, 2002, p. 361). The heating processes in
the models belonging to nearly all subgroups are driven by photospheric motions
and/or by magnetic-field processes that are connected to the photosphere. The
exception is the one subgroup that relates to magnetic instabilities in the corona
itself and does not necessarily relate directly back to the photosphere. However,
in general, it is expected that there should be a photospheric or chromospheric
signature to the heating process even though this signature may not completely
specify the process. For example, transient events (e.g. nanoflares) produce
energy and outflows consistent with plasma heating and have been related to
coronal loops (Aschwanden, 2002). In the manual selection process we examine
the foot point locations (see Figure 4 and the four enlargements in Figure 5) in
the EUV continuum and the longitudinal field strength in order to associate the
foot-point location with heating surrogates.

The foot points of coronal loops, in many cases, are not definitely determined
by visual inspection from a single wavelength filtergram. For those cases in which
the end points of the loops are not definite due to the overlapping of loops, the
lack of definition and contrast, and the fading of the loop at one of the foot
points, we can use two approaches. The first is to use the full set of filtergrams
from AIA to augment a particular filtergram and the second is to use photo-
spheric and chromospheric signatures as proxies. The heated coronal loops have
a temperature distribution along the axial direction of the loop. This implies the
loop heating or cooling is reflected to some degree by the dynamics and heating
signatures at the foot points, see e.g. (Berger and Title, 2001; Aschwanden,
2002; Yurchyshyn et al., 2010). Magnetic structures have been related to the
coronal loop foot points, e.g. see (Schrijver and Title, 2002; Katsukawa and
Tsuneta, 2005). Also using TRACE and Solar and Heliospheric Observatory /
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A

B

C

D

F

E

Figure 4. SDO data of active region AR 11117 on 25 Oct. 2010 at 21:00 UT: (Top) AIA 171
Å filtergram, (Middle) AIA 1700 Å filtergram, and (Bottom) HMI longitudinal magnetogram,
with enlarged selected foot-point views, to the left. As indicated by the circles, multiple wave-
length views of the regions around possible foot-point locations help to limit the foot-point
origin.

Michelson Doppler Imager (SOHO/MDI) data, dipole magnetic features were

related to large scale loops (Schrijver and Title, 2002). Both hot and cool loops

have been found to be rooted in 1 kG photospheric fields using Yohkoh, SOHO,

and TRACE data. The foot points are identified with some specific magnetic

feature or chromospheric emission at the base of the corona (cf., Figure 4). An

additional improvement in the manual foot-point selection process would be to

devise and test various algorithms for selecting the nearest possible heating site

using EUV images, magnetograms, and Doppler maps (De Pontieu et al., 2009).

Because of the relation between coronal heating and various foot-point signa-

tures in the photosphere or chomosphere, locating the foot points of the coronal

loops should be employed using these signatures. We employ these signatures in

our coronal-loop fitting by adding additional panels to the main computer panel

(Figure 5). The four additional subpanels show enlarged portions of the images

around the two foot points of the Bézier curve. The magnetograms and the 1700

Å continuum panels are updated continuously and the control points [P1 and

P4] are moved to fine tune these foot points to coincide with the enhancement

in the magnetic flux and UV emission.
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Figure 5. The main panel for selecting and mapping the coronal loops by foot-point ad-
justments. The first and last control-point subframe locations for the magnetic field and 1700
Åcontinuum regions are shown below the active region. There are keys to switch the main
panel backround view through the AIA filters and HMI data sets.

4. The Manual Program

In the manual mapping, we have developed a Mathematica R© program that

provides a simple interface to view alternately the EUV filtergrams and mag-

netograms and provide manipulation and storage of the control points, as well

as expanded views of the foot point regions. As seen in Figure 5, the main

coronal-mapping program provides a simple switching mode to change the back-

ground between AIA and HMI images. The control points are selected to map

a particular coronal loop in this data set. Furthermore, as the foot points are

adjusted, the expanded views (two time) of the two foot-point regions in both

the EUV continuum and longitudinal field are updated and allow suitable foot
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points’ adjustment and selection. The data are stored and then the next loop is
mapped, all at a rapid pace of only a few seconds per loop.

In order to obtain the EUV images needed for the coronal-loop identification
there are several alternatives, e.g., Heliophysics Event Knowledgebase (HEK:
(Hurlburt et al., 2012)), Virtual Solar Observatory (VSO: sdac.virtualsolar.org)
web pages , SolarSoftWare software (SSW: www.lmsal.com/solarsoft) and Joint
Science Operations Center data request forms (JSOC: jsoc. Stanford.edu). Here
we discuss only JHelioviewer. JHelioviewer (www. jhelioviewer.org) is a visu-
alization tool for SDO, AIA, and HMI data based on the JPEG 2000 image-
compression standard, which gives a highly compressed, quality progressive, and
region-of-interest based form of image search and acquisition (Mueller et al.,
2009). These features make it relevant for NASA’s Solar Dynamics Observatory
data since the observatory is providing more than a terabyte of image data per
day. The use of the browser allows the capturing of the AIA filtergrams and HMI
magnetograms. One of the primary advantages of the JHelioviewer software lies
in its ability, in part, to cross-reference the data sets and solar events from
various instruments and spacecraft and to allow the capture of selected regions
of interest for later analysis.

After browsing for specific data in JHelioviewer, the user created the state
file and images upon exiting. This state file can be modified to select particular
fields of view (center, width, and height in meters) and, if needed, reopened with
the new coordinates.

Figure 6, panels (a) and (b), show more details of the elements of the manual
mapping program. Figure 6(a), shows a full set of field lines that has been
mapped by selecting and moving the Bézier control points, and illustrates the
benefits of switching between background images. For each curve the four Bézier
points determine the full curve and are stored for analysis. Figure 6(b) shows, for
one loop, a selected Bézier curve and the four associate control points. Using the
method to straightening the line, the fit can be checked, as shown in Figure 6(c).
Further improvement of the program might automate small corrections through
a cost analysis that make slight adjustments automatically to fit the coronal
loop.

5. Determining the Best 3D Magnetic Field Model

The 2D parametric cubic Bézier curve fit to an imaged coronal loop can be
generalized to 3D with only two additional scalar parameters, and this 3D loop
can be used to constrain 3D magnetic-field models. This section discusses this
generalization. The 2D cubic Bézier curve (from Equation (1))is given by,

X(x, y) = f(u) =
3∑

i=0

Pi+1 βn,i(u), (9)

where Pj are 2D position vectors (xj , yj), and can be extended to 3D, by
having the positions vector be 3D vectors, i.e., Pj = (xj , yj , zj). Hence, writing
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a

b

c
Figure 6. Panel A, first row, a set of open and closed field lines is shown on the 171
Åfiltergram and the HMI LOS magnetogram for AR 11117 on 12 Oct. 2010 at 18:30 UT
(7.2 by 5.4 arcmin2 ). Panel B, the loop to be straightened is shown with the active region
(2.9 by 2.1 armin2). The loop is clearly defined leaving the following sunspot but weakens and
disappears as it enters the preceding sunspot region. A manual method allows the intuitive
connection of disjointed coronal loops within the context of the entire region, albeit, subjective
per loop, with consistent total structure. Panel C, the Bézier curve has been straightened and
the resulting associated emission for the coronal loop is displayed.

Equation (9) in the 3D form, we have

R(x, y, z) = F(u) = [[(1− u)3x1 + 3u(1− u)2x2 + 3u2(1− u)x3 + u3x4],(10)

[(1− u)3y1 + 3u(1− u)2y2 + 3u2(1− u)y3 + u3y4],

[(1− u)3z1 + 3u(1− u)2z2 + 3u2(1− u)z3 + u3z4]].

The X(x, y) curve is the 2D projection of the 3D curve R(x, y, z) onto the z = 0

plane. Figure 7 illustrates this projection geometry. Assuming P1 and P4 are

the photospheric foot points of a coronal loop, Figure 7 shows that by changing

only z2 and z3 for the matched Bézier control points, a 3D curve agrees with the
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Figure 7. The cubic Bézier connection between the 3D and 2D projections. Dashed blue line:
a 2D cubic Bézier curve in the z = 0 plane, defined by the control points Pi(xi, yi), i ∈ (1, 4).
If the control points P1 and P4 become 3D vectors, via (x1, y1, 0) and P4(x4, y4, 0), and if
we define P′

2
and P′

3
as P′

2
(x2, y2, z2) and P′

3
(x3, y3, z3), then we define the 3D cubic Bézier

curve (dark red) by the introduction of two parameters: z2 and z3. The two curves are related
by having points lying at the same location in the image plane.

fitted coronal loop in 2D projection. Therefore, if we can determine z2 and z3,
we have the 3D coronal loop structure, i.e. a 3D magnetic field line.

Next, a method to determine z2 and z3 is discussed in terms of minimizing
the coronal magnetic-field line tangents [Bobs(R)]] with a theoretical magnetic-
field model [Btheo(R)]. At a 3D position [R], we define the misalignment angle
µ(R), 0 ≤ µ ≤ π, (De Rosa et al., 2009; Aschwanden and Malanushenko, 2012)
as

µ(R) = cos−1 [
Btheo(R) ·Bobs(R)

| Btheo(R) | | Bobs(R) |
], (11)

where the angle µ is defined in terms of R and the associated field directions for
the observed and theoretical magnetic fields. For the entire loop, a characteristic
misalignment angle is defined by the equation

ξ =
1

Γ

Γ∑
k=1

µ(Rk), (12)

where the sum is over Γ = 100 equi-spaced points along a field line and Γ has the
same value for all loop lengths. Hence from the preceding paragraphs, we define,
for the jth-loop , a similar overall characteristic misalignment angle ξj [zj2, zj3]
for the 3D Bézier coronal fit, where the position z-coordinates are determined
by

z[zj2, zj3] = (1− u)3 zj1 + 3u (1− u)2 zj2 + 3u2 (1− u) zj3 + u3 zj4, (13)

where zj1 and zj4 are the estimated foot-point positions at z = 0, and zj2
and zj3 are initially unknown. Hence given a 3D magnetic-field extrapolation
model [Bm

theo(x)], where m is the model number, and using the 3D Bézier loop
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construction we can construct the characteristic misalignment angle for the jth

loop and mth theoretical magnetic field model assuming values for z2 and z3:

ξmj [zj2, zj3] =
1

Γ

Γ∑
k=1

cos−1[
Bm

theo(Rk[zj2, zj3]) ·Bobs(Rk[zj2, zj3])

(| Bm
theo(Rk[zj2, zj3]) | | Bobs(Rk[zj2, zj3]) |)

. (14)

The final set of values for zj2 and zj3, ( i.e. z
∗
j2 and z∗j3), are determined by

the values that minimize ξmj , i.e.

ξmj [z∗j2, z
∗
j3] = minz2,z3 [ ξ

m
j [zj2, zj3] ]. (15)

Using the best fit parameters z∗j2 and z∗j3, we define a global parameter [Φ] using
all of the N loops for each model:

Φ[m] =
1

N

N∑
j

ξmj [z∗j2, z
∗
j3]. (16)

We define this as a measure of the goodness of fit for each model. The best mag-
netic model representation for the corona is given by the model which satisfies
minm[Φ[m]]. Assuming that all the models extrapolate the same photospheric
vector magnetic field then this procedure allows a selection of the best model
that agrees with the coronal loops.

Figure 8 shows the misalignment of the tangent Bézier vectors and the nor-
malized magnetic-field directions associated with a field lines in AR 11117 (see
Figure 2), in which the middle-two cubic Bézier control points are given increas-
ingly vertical displacements z2 and z3. The resulting characteristic misalignment
angles (Equation (14)) decrease from 36◦ to 0.5◦. The photospheric projection
of the field line is fitted by a root-mean-squared 2D Bézier curve and then the
middle control points are given vertical displacements with the resulting curve
becoming 3D with the addition of non-zero values for z2 and z3. The minimum
characteristic misalignment error is not zero, in part from three sources of errors
resulting from i) the finite integration steps for the initial field lines, ii) an
imperfect match of the cubic Bézier curve to the projected field line (2% RMS
error), and iii) the RMS minimization determination of z2 and z3. However the
resulting 3D cubic Bézier curve is a good representation of the numerical field
line with an RMS displacement error of 3.3% compared to the arc length of the
field line.

By forcing the end points of the cubic Bezier curve (P1 and P4) onto the
photosphere, the misalignment-angle minimization process then has a single
global minimum for all the coronal loops used in this study. A follow-on study,
now in progress, also allows the z1 (or z4) to have a vertical displacement and
we minimize the coronal loops displacements with three free z-parameters. We
simulate an open field line by having one end point in the corona and one on the
photosphere. We are also exploring having all four control points with a vertical
displacement, although it might be problematic in finding a global minimum;
however, this would negate the necessity of assuming photospheric foot points.
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Figure 8. The reduction of the misalignment of the tangent Bézier vectors and the normalized
magnetic-field directions as displacements z2 and z3 are increased. The blue arrows are tangents
to the Bézier curve and the red arrows are the normalized magnetic-field directions at the same
point. The black line is the original field line generated from a ten-dipole magnetic field model
(Figure 2, Loop A). From bottom to top, the associated characteristic misalignment angles are
36.70, 29.75, 23.00, 16.61, 10.70, 5.33, 0.51 (minimum), and 3.78 degrees.

This method could be usedto determine the linear force-free parameters in
minimum dissipation rate (MDR) models (Gary, 2009) to distinguish the best
nonlinear force-free model, or to select the source-surface height of a potential
field source model (De Rosa et al., 2009; Malanushenko et al., 2012).

The active region AR 11117 was used in a comparison example (Wu et al.,
2012; Tadesse et al. , 2012; Jiang et al., 2012). Figure 9 shows the results of a
potential field extrapolation compared with the 3D time-dependent data-driven
MHD solution of Wu et al. (2012). Also for comparison, the NLFFF minimum
dissipative rate (MDR) model is included (Hu and Dasgupta, 2008; Hu et al.,
2010). The MHD is obviously superior in generating field lines closer to the
observed coronal loops. This superiority is, in part, caused by using the full
photospheric vector magnetic field in the model and having no global parameters
as is the case for the other two models which use constant-LFFF parameters.
Using Equation (16) we can determine a quantitative comparison between these
three models. The results of the analysis for the three models is shown in Table
2, where 25 closed coronal loops were used. This analysis assumed the identified
loops were closed, i.e. both ends of the loop were coronal foot points at z = 0.
Obviously this assumption is only asserted, but it relies on checking the polarity
of the assumed foot points and the general geometry of model field lines. Having
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a number of Bézier-fitted coronal loops allows the statistics to be in favor of the
majority being actually closed loops. In the current process we assume that the
foot points are actually at or very near the photosphere level, although later work
will allow these foot points to be also elevated in the minimization procedure.
For the initial investigation these foot point values are zero, to simplify the test
of the method.

For the three magnetic-field models studied (potential, MDR, and MHD) the
respective misalignment angles are 32.7◦, 28.8◦, and 27.6◦. The calculation had a
physical volume of 200×128×100 arcsec3. Of particular interest are the resulting
magnetic-energy values in the volume corresponding to 4.12, 4.47 and 4.90 ×1032

ergs. There is an almost inverse linear correspondence between the energy and
the misalignment angle, with an extrapolated zero misalignment angle having
an energy of about twice the potential energy. However, we have only three
points and it will be interesting to see if we can verify this trend in future
studies. Furthermore, in the context of several previous studies employing the
misalignment angle, the derived misalignment angles of Table 2 are consistent. In
a comparison of nonlinear-force free-magnetic field (NLFFF) models, DeRose et
al. (2009) derived the misalignment angles of the model in comparison with Solar
TErrestrial RElations Observatory (STEREO) data for active region AR 10953.
The mean misalignment angles of these NLFFF models ranged from 24◦to 44◦

with the minimum being, surprisingly, associated with a potential-field model;
there does not seem to be a linear correspondence between the energies and
the misalignment angles of these NLFFF models. The field lines employed in
this study were at the periphery of the active region and hence the study was
affected by the lack of knowledge of the side and upper boundary conditions.
The boundary conditions, the weakness of the transverse-field measurements,
and pre-processing the data could also affect these results significantly giving
the potential field a smaller misalignment angle. Two additional articles using
STEREO data have calculated the misalignment angle employing submerged
dipoles, with and without currents, to model the magnetic fields (Sandman
and Aschwanden, 2011; Aschwanden, 2013). Each of these articles is effectively
describes modeling the STEREO observed field lines, that is these models are
to achieve the best fit to the observed field lines and do not take into account
magnetic transverse field measurements, nor do they employ any solar plasma
parameters. Without electric currents, for four active regions employing from 70
to 200 loops, the peak misalignment angles ranged from 11.2◦to 17.8◦ compared
to the potential (PFSS) range of results from 19◦ to 32◦. In both cases there
were numerous misalignment angles greater than the peak value. Therefore, our
results using the 3D Bézier approach seem consistent with these previous results
and show a new promising method to compare competing magnetic field models.

6. Conclusion

Although our manual technique is rapid, it is not an automated technique. The
manual process should allow automated techniques to improve via a learning
process. In a recent article, Aschwanden (2010) reported on a promising tech-
nique that automatically identifies the position of segments of coronal loops with
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Table 2. The misalignment angle results comparing three magnetic-field models, using
3D Bézier curve fits to 25 coronal loops, characterized as closed field lines.

Field Mean Standard Loop Loop Mean Mean

Model Misalignment Deviation Minimum Maximum z2 z3

Angle Misalign. Misalign.

Angle Angle

Potential 32.7◦ 15.1 10.7 66.4 41.9 44.8

MDR 28.8◦ 11.6 14.1 59.3 32.4 37.1

MHD 27.6◦ 10.5 11.3 59.0 36.7 40.7

the number extracted approaching the number of segments obtained by visual
identifications. The method used is based on oriented-directivity tracing of curvi-
linear features and takes advantage of the specific property that coronal loops
have large curvature radii compared with their widths. In this article one can
find references to other automated approaches for coronal-loop identifications.
We hope that our visual identification process and the application of employing
Bézier curves described above can be used to improve these automated processes
via a cognitive, intelligent, or hierarchical temporal memory computing, i.e.
learning from experience, c.f. Banda, Angryk, and Martens (2013). In particular,
these new methods need to employ global connections and foot-point selections
to actually provide a complete closed magnetic-field line.

Similar investigations have been performed by other research groups. For
example, Malanushenko, Longcope, and McKenzie (2009) and Malanushenko,
Yusuf, and Longcope (2011) use a piecewise cubic spline function for a coronal
loop (i.e. two cubic Hermite splines were used to fix one loop where each spline
was defined by two end points and the tangents at the end points) and searches
for linear force-free field solutions curves in both its force-free parameter and
height for each best-fit field line to infer the twist of the lines. In order to
investigate the twist in the coronal magnetic field, various calculations have
been performed to select field lines from different LFFF and NLFFF models to
determine the free parameter [α] which gives the best fit of the coronal lines
(Lim et al., 2007; Lopez Fuentes, Klimchuk and Demoulin, 2008; Malanushenko,
Longcope, and McKenzie, 2009; Aschwanden and Malanushenko, 2012; Aschwan-
den et al., 2012b). When the two STEREO spacecraft had the proper angular
separation, STEREO investigations have provided unique 3D reconstructions to
allow testing of various extrapolation models (Aschwanden and Malanushenko,
2012; Aschwanden et al., 2012b). Our approach presented here is similar to
the STEREO method investigated by Aschwanden (2013); however we have
used a cubic Bézier curve fitting approach with applications for distinguishing
competing magnetic field models. The 3D-cubic Bézier spline (n = 3) has two
anchor points at the ends and two middle control points, which allow non-planar
curves.

The importance of employing coronal-loop images in selecting the magnetic-
field model arises in part from the difficulty of measuring the photospheric
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a

b

c
Figure 9. For active region AR 11117, a comparison of field lines from a potential magnetic
field (frame A), a minimization of energy dissipation rate process (panel b), and a data-driven
MHD magnetic field (panel c) are shown with AIA 171 Å coronal loops mapped by cubic
Bézier curves. The background is the LOS HMI magnetogram (3.3 by 2.1 arcmin2). The field
lines (red) of each model are generated from the end points (foot points) of Bézier mapped
coronal loops. Bézier coronal loops are colored yellow if they appear to be closed field lines,
and green if they appear to be open field lines. The agreement of the projected field lines with
the Bézier coronal-loop curves visibly improves from a to c.
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Figure 10. Flow chart for the selection of the best numerical coronal magnetic-field model
for an active region. Using the numerical criteria determined from the misalignment angles of
the 3D Bézier curve fits to best closed coronal loops, the compatibility of the models to coronal
observations can be determined numerically.

magnetic field. Wiegelmann and Inhester (2010)and Wiegelmann et al. (2010)
addressed the implication of the vector-magnetogram errors for deriving a non-
linear force-free magnetic-field model. The effect of the 180◦ uncertainty in
the polarization measurement of the transverse magnetic field and its relatively
weaker signal introduces errors in the magnetic-field extrapolations. These un-
certainties can be ameliorated by using the coronal-loop information on the
direction of the magnetic field lines and connectivity, hence the need to map
the coronal loops and extract their information for an improved assessment of
magnetic field models, e.g. see De Rosa et al. (2009).

In summary, we have described a rapid and flexible manual method based on
cubic Bézier splines to represent the EUV coronal loops of an active region. The
technique uses only four points per field line, which allows a computer-efficient
and rapid algorithm. Since the coronal loops are used as surrogates of magnetic-
field lines, the Bézier mapping can restrict the magnetic-field models derived
from extrapolations of magnetograms to those admissible and inadmissible, since
the magnetic-field extrapolations must satisfy not only the lower boundary con-
ditions of the vector field, the vector magnetogram, but also must have a set of
field lines that satisfies the additional conditions in the volume, akin to supplying
an upper boundary condition. Figure 10 summarizes this process, from data to
the result of the goodness of fit parameter [Φ] for a model. The tool and program
are important in determining the magnetic field models for the solar atmosphere
which are crucial in determining the overall dynamics of the solar atmosphere.
In subsequent articles we will apply this technique to compare various magnetic-
field extrapolation models. For active region analysis, the generalizations of this
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technique of coronal-loop identification and misalignment analysis can also be
used for iterating a specific solar-atmosphere model to improve its 3D recon-
struction of the corona. Such results will lead to a better understanding of the
3D plasma motion along the magnetic-field lines and magnetic-field oscillations,
as well as to an overall modeled magnetic field consistent with observed coronal
loop structure, and they will improve understanding of the solar atmosphere
dynamics.
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