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SIMULATING PHOTOSPHERIC DOPPLER VELOCITY FIELDS
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Abstract. A method is described for constructing artificial data that realistically simulate photospheric
velocity fields. The velocity fields include rotation, differential rotation, meridional circulation, giant cell
convection, supergranulation, convective limb shift, p-mode oscillations, and observer motion. Data con-
structed by this method can be used for testing algorithms designed to extract and analyze these velocity
fields in real Doppler velocity data.

1. Introduction

Artificial data play a crucial role in testing analysis techniques in many scientific
disciplines. These data have known characteristics which should produce predictable
results from the analysis technique. On the one hand, the artificial data can be extremely
simple, so that only one aspect of the analysis is tested. On the other hand, however,
some data must be realistic enough to closely match the characteristics of the natural
phenomena under investigation.

Artificial data have been used before to simulate Doppler velocity measurements of
photospheric flows. For example, Christensen-Dalsgaard (1984) and Balandin,
Grigoryev, and Demidov (1987) used a representation of the global oscillation velocities
to construct spatial filters for isolating different modes of oscillation. Hathaway (1987)
constructed simple velocity fields representing the steady photospheric flows to test a
technique for isolating different modes of convection and the large-scale steady flows.
However, this earlier work did not allow for a tilt of the Sun’s rotation axis toward the
observer, did not include components due to the p-mode oscillations or the motion of
the observer, used the velocity at pixel center rather than an average over the pixel, and
did not include a dense and broad spectrum to realistically represent the convective
motions such as supergranulation.

With the anticipation of moderate and high resolution Doppler images from the
Global Oscillation Network Group (GONG) and the Solar Oscillation Imager (SOI)
on the Solar and Heliospheric Observatory (SOHO), artificial data with similar resolu-
tion will need to be constructed for testing analysis routines and procedures. A method
for producing such data is described in this paper. Section 2 gives an overview of the
method. Section 3 provides the practical details for constructing the images and
Section 4 presents a candidate spectrum and the resulting images for a realistic simu-
lation of the photospheric motions.

Single Doppler images, like those produced here, can be used to test various
algorithms devised for identifying the modes of oscillation or different components of
the steady flow. Methods for removing the results of atmospheric seeing and scattering
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or various instrumental effects can be tested by introducing these effects in the images
and then comparing corrected images with the originals. A time series of these images
could simulate the actual data strings from the GONG or SOI instruments and would
be useful for testing techniques for filling data gaps, for merging simultaneous data from
different sites, and for testing temporal filters for separating the p-mode signal from the
steady flow signal. Images produced by the method described below are needed as the
first step in many such studies. They represent the pixel averaged velocity as seen by
an ideal instrument above the Earth’s atmosphere.

2. A Method of Producing Artificial Doppler Images

The vector velocity field on the surface of a sphere can be represented by a spectrum
of poloidal and toroidal modes (Chandrasekhar, 1961) with

CCORER S ACHE (1a)
max L[ oY™(6, 1 aY7(6, ¢) |

Vel® ¢)=Z‘1 z=:o i a(e P TG a(q) it (b)
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where Y7*(0, ¢) is a spherical-harmonic function of degree / and azimuthal order m, 6
is the colatitude measured southward from the north pole, and ¢ is the azimuth
measured prograde from the central meridian. The complex quantities R}, S}, and T}
are the spectral coefficients for the radial, poloidal, and toroidal components, respective-
ly. These coefficients are coupled by the equations of motion for the fluid. Much of the
physics to be learned in analyzing the data is concerned with the nature of this coupling
and the magnitudes of the various coefficients. Some of the advantages of using this
spherical harmonic representation are presented in Appendix A.

To simulate the observed line-of-sight velocity, the spectral coefficients in (1) are
specified and the three vector velocity components are calculated and then projected
onto the line-of-sight. The result must then be integrated over a picture element (pixel)
to simulate the acquisition of Doppler data. The line-of-sight velocity at a point (6, ¢)
is given with sufficient accuracy by

Vios(6, ¢) = V,(6, ¢) [sin B, cos 0 + cos B, sin f cos ¢] +
+ V6, ¢) [sin By sin 6 — cos B, cos 0 cos ¢] + 2)
+ V4(6, ¢) [cos By sin @] ,

where B, is the latitude at disk center (or equivalently the tilt of the Sun’s north pole
toward the observer) and velocities away from the observer are taken to be positive.
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Two other line-of-sight velocity components must be added to this velocity field in
order to produce realistic simulations of Doppler images. The convective limb shift, due
to the correlation between intensity and velocity in the solar granulation pattern, is not
well represented by the spherical harmonic expansion of (1) but is easily expressed as
a function of distance from disk center (Andersen, 1984; Cavallini, Ceppatelli, and
Righini 1986). The motion of the observer relative to the solar photosphere is also better
represented by functions of position on the visible disk rather than functions of heliogra-
phic coordinates. The practical details of how these different velocity fields are evaluated
and integrated over a pixel to produce a Doppler image are described in the following
section.

3. Practical Details for Constructing a Doppler Image

The line-of-sight velocity is calculated by first specifying the spectral coefficients, R},

7, and T7, and then evaluating the three components of the vector velocity field. This
evaluation is done most efficiently by putting the velocity components on a regular grid
in colatitude and azimuth and then interpolating to find their values at a particular point
on the Doppler velocity image. (Although this grid gives a surplus of points in the polar
regions, it is necessary to assure an even sampling of the spherical harmonics and
thereby avoid aliasing problems.) The integration of the line-of-sight velocity over a pixel
is implemented by dividing the pixel into a number of subpixels, evaluating the line-of-
sight velocity at the center of each subpixel, and then averaging.

The functions of the spherical harmonics in (1) can be determined analytically using
the recursive relations for the Legendre polynomials (Abramowitz and Stegun, 1964).
They give

Y7(6, ¢) = P7(cos 6) e™?, (3)
0 Y7 (6, ) = 1 [iCr P (cosf) +
@9 /4 ) sin 0 I+141+1
+(+ 1)Cr P (cos )] e™?, 4)
and
e Y76, ¢) = —l—iml_""(cos ) e'™? 3)
sin@dp ' sin® ’
where
[+m)(-m) |/
cp=| Lmlom |7 ©
QI+ HEi-1
and P}*(cos 0) is an associated Legendre polynomial normalized so that
+1
j [P (cos 0)]?d(cosf) = 1. ™

-1
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These expressions for the derivatives are particularly useful in that they only involve
Legendre polynomials of the same azimuthal order m. Appendix B describes an efficient
means of evaluating the Legendre polynomials for use in these expressions.

The individual components of the vector velocity field are evaluated from the spectral
coefficients by first specifying a colatitude point, 6., where

’J’
T
0.=n-(G-H—, j=1,N,, 8
J J 2)N9 J 4] ()

and then finding the Fourier components at that point by taking the Fourier transform
of (1) in the azimuthal direction. This can be done by inspection using (3)—(5) and gives

lm ax

V,(6,m)= Y R Py(cosb), 9)
l=m
1 e _
Ve(0,m)=—— % S7[ICT,  PT’ 1(cos ) —
Sm9j1=m

— (I + 1)C7 Py ((cos )] +

+ T7 [imP}*(cos )] , (10)

and

1w
V(6,m) = — _Z Sy [imP7*(cos 6,)] —

sm0j1 ™

— TP ICT, Py, 1 (cos§) — (1 + DC Py (cos6)]. (1)

This part of the calculation can be made more efficient by evaluating (9)~(11) only at
points in the northern hemisphere and using the parity properties of the Legendre
polynomials for evaluating them at points in the south. These Fourier components are
then inverse Fourier transformed to give the velocity at the points

4),:(1’—1)21-, i=1LN,. (12)
N,

The two other velocity fields, which are represented as functions of position on the
Doppler velocity image, must be added before the results can be said to realistically
represent a velocity field across the solar disk. The first of these is solar in origin — the
convective limb shift. The second results from the motion of the observer relative to the
Sun.

The convective limb shift results largely from the correlation between intensity and
velocity in the unresolved granulation pattern. It is well represented by functions of
distance from disk center (Andersen, 1984; Cavallini, Ceppatelli, and Righini, 1986) but
also depends upon the spectral line used in the observation and may depend upon
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latitude (Beckers and Taylor, 1980; Brandt and Schréter, 1982) and time (R. K. Ulrich,
private communication, 1987). Fluctuations in the granulation pattern will also produce
an element of noise in the limb shift signal that varies randomly from pixel to pixel with
an amplitude that depends upon the pixel size.

The motion of the observer can be separated into longitudinal motion toward or away
from disk center and transverse motion perpendicular to this line. The longitudinal
motion is well represented by

Vlos = CO(I - %pz) ’ (13)

where ¢, is the velocity of the observer toward disk center (a function of time) and p
is the angular distance on the sky from disk center measured in radians. The transverse
motion is represented by an apparent rotation of the Sun about an axis perpendicular
to the direction of motion and results in a velocity gradient across the disk with

Vies = €, psin@ + ¢, pcos O, (14)

where ¢, and ¢, are the components of the observers motion parallel to the solar equator
and rotation axis, respectively, and @ is a position angle measured clockwise from the
heliographic north.

The line-of-sight velocity is constructed from these individual velocity components.
Each pixel is divided into an array of subpixels. The line-of-sight velocity is then
calculated from (2) by finding the coordinates (6, ¢) at the center of the subpixel and
interpolating from adjacent points using a second order accurate scheme, e.g.,

V(6 ¢) = V(0, ¢) +
+2 V0.1, ) = V(0_1, ¢)] 40 +
+2[V (6115 ¢) = 2V (6, 9) + V(6 1, $)] 46> + (15)
+32[V (0, ¢rh1) = VG, ¢ )] 4¢p +
+2 [V, ¢:1) - 2V (6, 9) + V(6 ¢ 1)1 497,

where
46 = (6 - ej)ﬂ’, (16)
T
and
A¢ = (¢ - %)i"’- (17)
2n

Values for points beyond the boundaries are easily obtained since the boundaries of the
velocity arrays map back onto themselves. The limb shift and observer motion are then
added and the line-of-sight velocity for an image pixel is given by a simple average over
all subpixels that map onto the disk.
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4. A Realistic Example

Velocity images have been constructed with this method to test data analysis and
reduction algorithms that will be used on data from the GONG and SOI instruments.
Simple, single component images have been made for testing mode identification
routines. In addition, a substantial amount of effort has been devoted to making quite
realistic images by specifying a broad spectrum for the coefficients R}, S7*, and T7"
(specified in units of m s ~!). This spectrum was used to construct velocity images on
a 256 x 256 pixel array for which it was assumed that the image scale was 2000” across
256 pixels. The arrays for the vector velocity components each had 256 points in
colatitude and 512 points in azimuth. The time of ‘observation’ was arbitrarily chosen
to be 17:00 UT on 1 August, 1985. This set the latitude at disk center, giving
B, = 5.69°, and set the radius of the image, giving a semi-diameter of 947.04”. Each
pixel in the image was divided into a 4 x 4 array of subpixels for averaging. In making
these velocity images it was assumed that the velocity field due to the p-mode oscillations
is purely radial while that due to the steady flows is purely in the horizontal. Although
the chosen spectrum is not unique in its ability to mimic the observed velocity fields,
it has an advantage in being fairly simple.

The p-mode spectrum was given by a uniform amplitude for all modes up to a cutoff
at / = 354. Although the higher degree modes are probably not well resolved by the
256 x 256 image, a comparison with an image produced on a 512 x 512 array shows
that the final images agree quite well. The amplitude of the line-of-sight velocity matches
the observations when a 1 m s~! amplitude was used for the modes with

Ry =1-¢, (18)

where @is a random phase for each mode, / extends from 0 to 354, and m extends from
0 to . When summed over m this gives a spectrum that increases linearly with / and
produces a Doppler velocity image that has no preferred position or orientation. Figure 1
shows a representative image for a given set of random phases. The pattern agrees quite
well with the observations of Leighton, Noyes, and Simon (1962). It has a fairly random
and small cell size with an amplitude of about 300 m s~ ! and the signal vanishes near
the limb because of projection effects.

The steady flow spectrum was characterized by four different types of flow: rotation,
meridional circulation, giant convection cells, and supergranulation convection cells.
The rotation and differential rotation are axisymmetric (m = 0) toroidal flows. A three-
component spectrum was used with

T = 1569.585, (19)

T9 = —33.070, (20)
and

T = —3.444 . (21)

This gives a rotation profile nearly identical to that of Howard and Harvey (1970). More
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P—MODE OSCILLATIONS

+825

(m/s)

-375

Fig. 1. A Doppler velocity image for the p-mode oscillations. Dark areas are approaching the observer;
light areas are receding. The pattern shows fairly random variations with an amplitude of about 300 m s~
which diminishes near the limb due to projection effects.

recent rotation profiles might be used and the torsional oscillation signal might also be
included. The primary concern is that the rotation profile for the simulation is accurately
known and should be accurately recovered by analysis techniques designed to determine
the profile.

The meridional circulation is an axisymmetric (m = 0) poloidal flow. Considerable
controversy exists concerning the nature of the meridional circulation on the Sun so a
somewhat arbitrary spectrum was used with

S9 = 8.433 22)

and
S9=12236. (23)

This gives a meridional flow that is directed toward the poles from the equator but with
latitudinal variations in the velocity amplitude that would imply (from the equation of
mass continuity) a downflow at mid-latitudes.

Controversy also exists concerning the giant cells so another somewhat arbitrary
spectrum was used. This spectrum extends from / = 1 to / = 24, has a peak at [ = 12,
and includes azimuthal orders m = 1 to m = I. The poloidal and toroidal components
for each I and m are of equal amplitude and in phase with each other but random phases
are taken for successive modes. This spectrum is given by
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_ 2
S;ﬂ:l[l—(l—lz)]e@, I=1,24, (24)
) 122
and
7 = S7. (25)

The large toroidal component was included because solar rotation should be a strong
influence on these large scale, low amplitude flows. Numerical modelling (Glatzmaier,
1984 ; Gilman and Miller, 1986) suggests a highly anisotropic giant cell pattern with cells
elongated north to south across the equator dominated by modes with / ~ 12, the
spectrum given by (24) and (25) has a similar peak but is independent of m and produces
a more cellular pattern.

The spectrum for the supergranules is fairly well constrained by observations. Taking
3 x 10*km as a characteristic size for supergranules (Leighton, Noyes, and Simon
1962) indicates I ~ 150. Several spectra with peaks about / = 150 were used and it was
found that a large spectral width was required to produce a pattern similar to that
observed for supergranules. The adopted spectrum extends from / = 70 to / = 230 with
m = 1 to m = I. Since the convective motions in supergranules are expected to be only
weakly influenced by solar rotation (Hathaway, 1982), the toroidal components were
taken to be only a tenth as large as the poloidal components. This spectrum is given
by

_ 2
S;n=§[1_(’_152]e@, I=10,230, (26)
I 802
and
TP = 587 (27)

The full spectrum for the steady flow component is shown in Figure 2.

Figure 3 shows the line-of-sight velocity pattern for the supergranules and for the giant
cells. The supergranule pattern compares quite favorably with observations (e.g.,
Durney et al., 1985, Figure 1). The pattern is cellular with approaching velocities alter-
nating with receding velocities and the zero velocity lines are largely parallel to the limb.
The pattern vanishes near disk center because the velocities were taken to be purely
horizontal, and vanishes near the limb due to averaging over foreshortened cells. The
maximum velocities are on the order of 500 m s ~ ! which also agrees well with observa-
tions (Leighton, Noyes, and Simon 1962). The giant cell pattern has a much lower
amplitude but with a larger cell size. The zero velocity lines are not parallel to the limb
for the giant cells and produce an apparent spiral pattern about disk center because of
the large toroidal component of the flow.

For the total velocity field a convective limb shift was included in the data with

Vies = — 547.79 + 175.79(1 - 1) + 101.60(1 — p)* +
+270.40(1 — w)’ms~ ', (28)
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STEADY FLOW VELOCITY SPECTRUM
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Fig. 2. Velocity spectrum for the steady flow components in the synthetic data. The root-mean-squared

velocity in the horizontal motions averaged over the surface of the Sun and summed over all orders m is

plotted as a function of spherical harmonic degree /. Rigid rotation, with / = 1 and average velocity 1569.6,

goes off the vertical scale of this plot. Differential rotation is represented by the spikes at /= 3 and / = 5.

The / = 3 component has an average velocity of 81.0 and also goes off scale. The meridional circulation is

represented by spikes at / = 2 and / = 4. Supergranules are represented by the broad peak about / = 150
and giant convection cells are represented by the peak about / = 12.

where y is the cosine of the heliocentric angle from disk center (Cavallini, Ceppatelli,
and Righini, 1986). The motion of a hypothetical observer at Sacramento Peak, New
Mexico was also included with

Vi = —421.14(1 = 0.507) — 28931.2p 5in @ —
—2190.3pcos®ms~1!, (29)

where p is measured in radians (T. Brown, private communication, 1987). The resulting
line-of-sight velocity image is shown in Figure 4.

5. Conclusions

Realistic data have been constructed with the method described in the preceding
sections. The line-of-sight velocity field presented in Figure 4 has many characteristics
in common with actual Doppler images of the Sun. Artificial data such as this can be
used to test algorithms and analysis routines used for reducing Doppler velocity data
from instruments like those proposed for GONG and SOHO. Simpler images are, of
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Third, the kinetic energy associated with the motions is simply expressed by

2n

L1 (.,
KE(r) = Ep(r)ﬂoj J [V7(6, ¢) +

+ V36, ) + V36, $)] dpsin 6d0 =
aPM{[R7? + 1A+ VISP + I+ D[T"]%} (A.3)

So the kinetic energy and average velocity of each individual mode can be easily
determined. Fourth, the angular momentum of the surface about the pole is simply
expressed by

T 271

L(r)=r3p(r) J j [sin 6 V,(6, $)] d¢p sin0d 0 =
0 0

= [4nr3 p(N] /2 T9. (A.4)

So a single spectral component specifies the total angular momentum of the surface.

It should be noted that the spherical harmonics can represent the axisymmetric flows
such as differential rotation and meridional circulation with the same ease and efficiency
as other often used methods (such as power series in sin (B)). The spherical harmonic
representation is preferred for reasons of interpretation.

Appendix B

In producing the velocity images a series of associated Legendre polynomials of
azimuthal order m and degrees/ = mto/ = [, at a colatitude point 6 are required. This
same situation arises in taking a spherical harmonic transform. The data undergo a
Fourier transform in azimuth and then require a series of Legendre transforms for each
azimuthal order m. This can be done most efficiently using the recurrence relation

P7(cos ) = A7 cos 0P (cos 0) — B Py (cos0), (B.1)
where
4 = [(21 + 1) (2l - 1)]”2, B.2)
(I+m)y( - m)
and
By = [(21 + D) +m+ (I -m- 1)]”2. B.3)
QRI-3)(l+m(I-m)

This generates each of the required polynomials in turn, without calculating any other
unnecessary terms. The coefficients 47 and B7” (as well as C}* as defined by (6)) can
be calculated once and stored for repeated use at each colatitude point. The starting
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course, much easier to produce and provide a powerful means of testing data reduction
programs.

The images produced with this method represent the line-of-sight velocity at an array
of pixels on a solar image from an ideal instrument above the atmosphere. The method
as described here does not include the effects of atmospheric scattering and seeing or
any of the instrumental effects involved in measuring this velocity field. Efforts to include
these effects have been undertaken by other members of the GONG Artificial Data
Project Team for the proposed GONG instrument. Using images like that shown in
Figure 4 as originals, this project has produced realistic simulations of observations with
the GONG instruments. A time series of such images is planned for the near future for
testing data merging, gap filling, and temporal filtering algorithms.

The FORTRAN program written to produce the data shown in Figure 4 requires
about 1 hr of cpu time on a VAX 8300 or about 30 s on a CRAY X-MP. Thus, single
images can be readily produced and modest time strings are also possible. This program
is available through the GONG for use by the community.
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Appendix A

There are several advantages to representing the velocity field in terms of normalized
spherical harmonics as in (1) First, the normalized spherical harmonics comprise a
complete orthonormal set of functions on a sphere with

1 ‘j\
27.[
0

and as such are the preferred basis for representing a field quantity. Second, if the
velocity is solenoidal (e.g., Chandrasekhar, 1961) the radial and poloidal coefficients are
coupled with

Y,.(6, $) Y7(6, p) dp sin 0d0 = <57, (A.1)

OQ__—);)

10 I(+1
= —[r?*Rp] = - ( )S;". (A.2)
re or r
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SUPERGRANULES GIANT CELLS

—544 (m/s) +508 ~24 (m/s) i

Fig. 3. The resultant line-of-sight velocity field for the supergranules and the giant cells. Dark areas are

approaching the observer; light areas are receding. The supergranule pattern is cellular with peak amplitudes

of about 500 m s~ ! near the limb. The giant cell pattern has much larger cells but with peak amplitudes
of only about 20 ms~".

TOTAL LINE-OF-SIGHT VELOCITY

-2945

Fig. 4. The total line-of-sight velocity field constructed from the candidate spectrum. Rotation, super-

granulation, limb shift, and p-modes are noticeable. The giant cells and meridional circulation, having

smaller amplitudes, are masked by these stronger components. The velocity scale passes from dark to light
four times to help bring out the cellular patterns.
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values for the relation are

.5. 1/2
Pg(cos0)=[13 5:7...2m + 1)] .

sin™ 0, (B.4)
2 2-4-6...2m)
and
P (cosf)=0. (B.5)

While this scheme is stable and efficient, it does require the use of extended range
arithmetic as described by Smith, Olver, and Lozier (1981) to accommodate the large,
negative exponents that arise when m becomes large.

The recurrence relation given by (B.1) is preferred to those suggested by Libbrecht
(1985). In producing and analysing data like this one needs to generate a series of
Legendre polynomials with a given azimuthal order m for degrees /= m to some
maximum value. The relation (B.1) does this with three multiplications and one addition
for each increment in /. The recurrence relations suggested by Libbrecht require a long
series of such operations that generate many intermediate results that are either dis-
carded or stored in large arrays.
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