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ABSTRACT

Flow tubes adjacent to closed magnetic field lines on
the boundaries of streamers can have spreading factors
which change rapidly with height. Numerical models in
this thin layer are subject to uncertainties. Here we use
an analytic model of magnetically closed and adjacent
open regions to analyze the spreading factor close to the
closed field lines. The model is based on the one-
temperature, isothermal flow model of Pneuman (1968),
extended to calculate spreading factors and plasma beta,
and to better explain streamer evolution with increasing
temperature.
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1. INTRODUCTION

Coronal streamers are bright because their density is
higher than in adjacent regions of the corona. The
boundary of streamers, the brightness boundary , is
often sharp and is sometimes thought of as being the
interface between open (to the interplanetary medium)
and closed magnetic field lines. However, this probably
is not the case since the brightness boundary is
commonly observed to extend even to the outer limits of
the LASCO/C3 field of view — 30 solar radii (Rs)
whereas static closed field lines do not extend past ~5
Rs in any published model.

Recently, Suess et al. (1999a) found that Ulysses
observes only slow wind just inside the brightness
boundary. It is therefore more likely that the brightness
boundary and the fast/slow wind boundary are identical.
This is supported by several independent lines of
evidence, including: (i) A sharp velocity boundary in
UVCS Doppler dimming data that apparently coincides
with the brightness boundary (Habbal et al., 1997; Woo
and Habbal, 1999). (ii) The sharp boundary between fast
and slow wind in the interplanetary medium (McComas
et al, 1998). (iii) The coincidence between first
ionization potential (FIP) abundance anomalies and the
fast/slow wind boundary at Ulysses (Geiss et al., 1996).
(iv) The coincidence between UVCS-observed
abundance anomalies in the legs of streamers and FIP
abundance anomalies (Raymond et a. 1998). Raymond

Fig. 1: Geometry assumed for the streamer model. Aq, A,,
and A; are described in the text.

et a. furthermore concluded that slow wind originates
in very slow or transient (on intervals of ~a day)
releases or solar wind in the bright legs of streamers,
just inside the brightness boundary. This is required for
the gravitational settling that they infer exists.

Assuming the brightness and fast/slow wind boundaries
are the same, it would be valuable to have a model of
this region that can easily be used to analyze the
different physical phenomena and questions that arise.
In particular, we would like to be able to make a
guantitative evaluation of the hypothesis by Noci et al.
(1998) that slow wind arises because of the special
properties of the geometric spreading factor along
streamlines in complexes of otherwise closed streamer
magnetic field regions. A 2d MHD model (V sguez et
al., 1999) has been used to find solutions like those
proposed by Noci. Here we describe a simpler 1d model
which promises to be able to do the same, but which we
find cannot do so in its simplest form. Still, we are able
to find new results on how streamer structure evolves
under changing temperature and on the geometric
spreading factor in the legs of streamers.















First, it predicts how a streamer evolves under
continuously increasing temperature. There is an
absolute maximum temperature of ~3.5x10° K beyond
which isothermal streamers do not exist on the Sun,
under the assumption that g>1 in region 1. Branching
solutions between fast and slow wind, for increasing
spreading factors, are not obtained in this simple model.
In V squez et al. s (1999) model, the spreading factor
behavior, which is reproduced schematically here in
Fig. 10, occurs where <1 and where the kinetic energy
is aso less than the magnetic field energy density.
Therefore, simply adding the region 4 described above
will probably recover this behavior.

Finally, it appears that the radial dashed line in Fig. 1,
bounding region 2, can now be interpreted as the
brightness boundary, as opposed to being in the center
of acoronal hole as supposed by Pneuman (1968).
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