Explosive Events in Magnetic Network

Jongchul Chae

Department of Astronomy and Space Science
Chungnam National University, Korea
and
Big Bear Solar Observatory, NJIT
1. What are they?

- Small-scale (~1 Mm), short-lived (~1 min), high-velocity (~100 km/s) events that are observed in transition region UV lines
- Originally discovered from HRTS experiments
2. Why are they important?

- They are many and ubiquitous on the Sun
- Small-scale magnetic energy release process
 - Magnetic reconnection
 - Shock
- Possibly important in coronal heating and solar wind driving
3. What have we learned from SOHO?

- Dynamical Property
 - Confirmation of bi-directional jet nature from spectral profiles, and spatial variations of Doppler shifts
 - Innes et al. (1997a)
 - Chae et al. (1998a)
3. What have we learned from SOHO?

- Temporal Behavior
 - Bursty and recurrent occurrence
 - Innes et al. (1997b) Chae et al (1998a)
3. What have we learned from SOHO?

- **Magnetic Property**
 - weak fields of mixed polarity
 - Away from big flux concentrations
 - strong association with flux cancellation
 - flux cancellation precedes explosive events

Chae et al. 1998a

Ryutova and Tarbell 2000
3. What have we learned from SOHO?

- Association with H alpha upflow
 - typical size 2.5 arc sec
 - lifetime 1.4 min
 - speed up to 20 km/s, typically 5 km/s
 - birthrate 80 /s
 - recurrent behavior
 - Chae et al. (1998b)
 - Lee et al. (2000)
Spicules and Upflow Events

(a) Upflow Event

(b) Spicule

(c) Upflow Event

(d) Spicule
3. What have we learned from SOHO?

- Comparison with blinkers
 - associated, but not co-spatial
 - both kinds are in mixed polarity regions
 - blinkers comprise elementary brightenings that are similar to explosive events in size, lifetime, and spectral characteristics
3. What have we learned from SOHO?

Possible association with density enhancements

✓ Perez and Doyle (2000)
 cf. Harrison et al. (1999): blinkers are predominantly caused by increases in density or filling factor

Global energy contribution

✓ upward energy flux = 10^5-10^6 cgs: seems to be enough for coronal heating
✓ net energy flux = 10^4-10^5 cgs
 Winebarger et al. (1999)
 cf. coronal heating 3×10^5 cgs
 Withbroe & Noyes (1977)
4. How are they explained?

- Magnetic reconnection flow in transition region
 - Originally proposed by Dere et al. (1991)
 - Supported by: Innes et al. (1997), Chae et al. (1998a)
 - Bi-directional jet nature
 - Jet speed comparable to Alfvén speed in the transition region
 - MHD simulation (Innes & Toth 1999)
 - Association with flux cancellation if flux cancellation is a result of magnetic reconnection in the level of transition region
 - Challenged by:
 - Association with flux cancellation if flux cancellation is a result of low level magnetic reconnection
 - Association with H α upflow events
 - The existence of bright central spectral component in lines (Innes & Toth 1999)
4. How are they explained?

- Two-step magnetic reconnection
 - Chae (1999)
 - Flux cancellation = low level reconnection
 - H alpha upflow event = development of upward flow of low level reconnection
 - Explosive events = secondary reconnection driven by H alpha upflow
 - Supported by density enhancement
Two-Step Reconnection Model

- Step 1: Generation of Upflow Events
- Step 2: Generation of Explosive Events
4. How are they explained?

- Hydrodynamic cumulation
 - Tarbell et al. (1999), Ryutova & Tarbell (200)
 - Flux cancellation = low level reconnection
 - Shock waves are created by low level reconnection
 - Explosive events = a result of shock collision or explosive instability of negative energy waves
 - Possible to explain both brightenings and jets in the same context
5. Are they important in coronal heating?

Pros:
- numerous
- carry (kinetic) energy enough for coronal heating

Cons:
- Too cool (10^5 K) for coronal heating
- Too localized

Necessary conditions:
- Process to convert kinetic energy to heat for 10^6 K plasma
- Process to distribute heat over very large area
- High-frequency Alfven waves created by explosive events?
5. What should we learn from beyond Solar-B?

- The physics of magnetic reconnection responsible for flux cancellation
 - The atmospheric level of occurrence: photosphere or transition region?
 - Steady or bursty? If flux cancellation occurs in a bursty way, what’s the size, flux, and time scale of elementary process?
- The refined temporal and spatial relationships between flux cancellation, H alpha upflow events, and explosive events
- Possible existence of high-frequency MHD waves generated by explosive events