The Scientific Objectives
listed in the Introduction are designed to produce a much more detailed
picture of the
heliosphere and what it looks like. They will specifically
produce answers on the shape of the termination shock and on the thickness
of both the inner and outer heliosheaths.
The Scientific Objectives lead to a group of Observing Objectives. These are a detailed description of what phenomena will be measured at what distances from the Sun, and where the measurements are most important. |
||
|
||
|
||
|
Refer to the horizontal bars on page 6 for identification of the Observing Objectives and where the observations will be concentrated. (follow links below to details on the phenomena)
Heliosheath Solar Wind Plasma
Interplanetary Magnetic Field (click on title to go to detailed discussion)
The heliospheric magnetic field is of little dynamical importance throughout most of the heliosphere. But, because of the amplification in the inner heliosheath, it is possible for the field to become strong enough to affect the flow near the stagnation point between the solar wind outflow and the incoming interstellar plasma flow, at the front of the heliopause in the upstream direction. This is called the Cranfill effect.
Cranfill Effect
Measurement Objectives:
Even inside the termination shock, the IMF is not ever smooth. Fluctuations in direction occur on all time scales down to far less than one second. At times longer than a day, the fluctuations are primarily due to changes in the dominant polarity at the Sun and are discussed below in relation to reconnection. At shorter time scales, the fluctuations are due to:
Field Direction Fluctuations
Measurement Objectives:
The IMF in the vicinity of the stagnation point changes polarity at least twice every solar rotation period of 25.5 days, and also fluctuates in direction due to the entrained MHD turbulence in the inner heliosheath. At the same time, the magnetic field is being amplified by "pile-up" as it is carried towards the stagnation point in the upstream direction. Therefore, near the stagnation point the plasma beta (ratio of internal energy density to magnetic field energy density) is much less than one.
Reconnection
Therefore, reconnection probably occurs first on the heliopause in the vicinity of the stagnation point in the upstream direction. One of the principle reasons for sending The Interstellar Probe in this direction is to have it pass through this reconnection region.A low beta plasma in the inner heliosheath is pressed against what is probably either a low beta or O[1] beta interstellar plasma in the outer heliosheath. The polarity being favorable for reconnection. The magnetic fields should be generally oppositely directed across the heliopause at the stagnation point for reconnection to take place. This is satisfied during roughly half of any given 25 day interval since the magnetic field near the equator always alternates polarity over 25 days due to solar rotation and fluctuates continuously in direction.
Measurement Objectives:
In the anomalous component of cosmic rays, fluxes of helium, nitrogen, oxygen, neon, protons, and carbon are observed to be enhanced in a region of the energy spectrum ranging from a kinetic energy of 20 MeV to ~300 MeV. The radial intensity gradient of these particles is positive out to the maximum distance reached by current spacecraft, indicating that this component is not of solar origin, an that it probably originates in the outer solar system. It is likely that anomalous cosmic rays are particles in the solar wind that are accelerated at the termination shock. The particles in the solar wind are not, however, ambient solar wind plasma. instead, the particles are initially neutral interstellar atoms that have streamed into the heliosphere as a consequence of its motion through the LISM. They have become ionized and picked up by the solar wind and then carried with the IMF back out to the termination shock. There they are accelerated to the observed energies. It was predicted that the particles would be predominantly in a charge state of +1 if the hypothesis for their origin were correct and this has recently been confirmed.
Anomalous Cosmic Rays
Measurement Objectives:
Interstellar neutral gas flows relatively unimpeded into the heliosphere, although it possibly experiences filtration at the heliospheric boundaries. Neutral interstellar hydrogen is especially susceptible to the effects of filtration, being decelerated and heated in passing from the LISM into the heliosphere. Atoms flowing into the supersonic solar wind inside the termination shock can undergo either photoionization or charge exchange ionization and the new ions almost instantaneously respond to the electromagnetic fields in the solar wind. The newly born ions immediately gyrate about the IMF, after which they experience scattering and isotropization by either ambient or self-generated low-frequency electromagnetic fluctuations in the solar wind plasma. Since the newly born ions are eventually isotropized, their mean bulk velocity is now that of the solar wind i.e., they convect with the solar wind flow, and are then said to be picked up by the solar wind. The isotropized pickup ions form a distinct population of energetic ions (~1 KeV) in the solar wind whose origin is the interstellar medium and which serves as the seed population for anomalous cosmic rays.Pickup Ions
Neutral Hydrogen UV GlowNeutral Hydrogen UV Glow
Zodiacal lightZodiacal Light
There are at at least 70,000 trans-Neptunian objects in the outer solar system with diameters larger than 100 km in the radial zone extending outwards from the orbit of Neptune (at 30 AU) to 50 AU. There may be many more bodies beyond 50 Au, but these are presently beyond the limits of detection. Observations show that the trans-Neptunians are mostly confined within a few degrees of the ecliptic, leading to the realization that they occupy a ring or belt surrounding the Sun. This ring is generally referred to as the Kuiper Belt.Kuiper Belt Dust
Energetic neutral atomsEnergetic Neutral Atoms
PileupPileup (H, Ions, Dust, Interstellar Magnetic Field)
Hydrogen wallHydrogen Wall
Large Interstellar Dust Grains
Dust grains in the diffuse inerstellar medium have been believed to be smaller than 0.5 microns until larger ones have been discovered by the dust detectors on-board the interplanetary spacecraft Ulysses and Galileo. Since large grains are much less abundant than small interstellar dust grains, they do not contribute much to the extinction of starlight and are thus hard to observe spectroscopically. Therefore, in-situ measurements are needed to measure the flux and/or composition of the large-grain component in interstellar space. Despite their low spatial concentration, large interstellar grains carry a large fraction of the total dust mass in the local interstellar medium, and potentially distribute large amounts of refratory/organic substances over large spatial scales. |
This is what a interstellar dust particle might look like. Many such dust grains are collected in the upper atmosphere by aircraft flying at high altitudes. Most of these grains are believed to be interplanetary dust grains (IDPs), but grains have been found inside the IDPs that show non-solar isotopic composition. Top candidates for interstellar grains are GEMS (glass with embedded metals and sulfides) that consist mainly of amorphous silicate, which is also believed to be the major constituent of interstellar dust grains. GEMS are typically some tenths of a micron to some micron in size, and are therefore larger than "classical interstellar grains". A collection of IDPs is kept at the Astromaterial Collection Facility at the NASA Johnson Space Center. |
Small Interstellar Dust Grains
Extinction of starlight in the EUV indicates that solid particles in interstellar space can be as small as large mono-molecules. A good fit to the spectroscopic data is achieved when considering polycyclic aromatic hydrocarbon (PAH) molecules. The largest grains that are evident from extinction measurements have diameter of about 0.5 microns. This size range can be considered as "classical" interstellar grains, because their existence was known long before the in-situ measurements of interstellar grains in the Solar System. Fits to the extinction curve indicate that the grain size distribution drops very steep to large masses, that is, small interstellar grains are much more abundant than large ones. If this is true, why haven't they been discovered in early in-situ measurements (e.g. with the instruments on-board the Pioneer 8 and 9 spacecraft)? After the obvious non-detection of interstellar dust by Pionner, it was argued that the grains develop a electrostatic charge in the plasma and radiation environment of interplanetary space, and that this charge couples them to the solar wind, which transports them out of the Solar System. This interpretation is consistent with the mass distribution of interstellar grains that have been detected in-situ by Ulyssess and Galileo. |
Modeling the motion of small interstellar dust particles through the heliopause has shown that the solar wind magnetic field is capable of inhibiting small grains from entering the inner Solar System. The figure on the right shows the spatial distribuion of 0.1 micron grains that enter the Solar System from the right with a velocity of 26 km/s. The panel covers an area of 80AU x 80AU. The actual distribution depends on the phase of the solar cycle, since the magnetic field polarity in the solar wind changes with the cycle. As a result of the deceleration of the grains, a region of increased spatial density forms upstream of the Sun. The spatial density inside 5AU is strongly reduced during the whole 22-year solar cycle. |
|
Recently, it was argued, that grains in the size range below 0.05 microns can interact strongly with the compressed magnetic field in the heliopause region, effectively diverting them around the heliosphere. Unfortunately, such small grains are out of the sensitivity range of todays in-situ dust detectors. Outside the heliosphere interstellar grains of sizes of a few tens of a nanometer should be present abundantly, as indicated by the extinction data. One very interesting quantity to measure in interstellar space is the velocity dispersion of these small grains, since the dispersion indicates the amount of disturbance that the local cloud has experienced in the past. |