Nasa Logo

 

+ Home
Solar Physics
       + Solar Cycle Prediction         + Magnetograph       + The Sun in Time       + The Hinode Mission      + The STEREO Mission
Skip Navigation Links

THE SUN  

Why We Study the Sun  
The Big Questions  
Magnetism - The Key  

SOLAR STRUCTURE  

The Interior  
The Photosphere  
The Chromosphere  
The Transition Region  
The Corona  
The Solar Wind  
The Heliosphere  

SOLAR FEATURES  

Photospheric Features  
Chromospheric Features  
Coronal Features  
Solar Wind Features  

THE SUN IN ACTION  

The Sunspot Cycle  
Solar Flares  
Post Flare Loops  
Coronal Mass Ejections  
Surface and Interior Flows
Helioseismology  

THE MSFC SOLAR GROUP  

The People  
Their Papers  
Their Presentations  

RESEARCH AREAS  

Flare Mechanisms  
3D Magnetic Fields  
The Solar Dynamo  
Solar Cycle Prediction  
Sunspot Database  
Coronal Heating  
Solar Wind Dynamics  

PREVIOUS PROJECTS  

GOES SXI Instrument
MSFC Magnetograph  
MSSTA
Orbiting Solar Obs.
Skylab
Solar Maximum Mission
SpaceLab 2
TRACE
Ulysses
Yohkoh

SOUNDING ROCKETS  

Chromospheric Lyman-Alpha Spectro Polarimeter (CLASP)
CLASP2
CLASP2.1
Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

CURRENT PROJECTS  

GONG
Hinode
RHESSI
STEREO
SDO
SOHO

OUTREACH  

The Sun in Time  
Solar Information for Teachers  
Eclipses and the Sun -- Girl Scouts

FUTURE PROJECTS  

Solar Probe Plus  
Interstellar Probe

VIDEOS  

NASA Videos

Solar Cycle Prediction

(Updated 2017/03/23)

Please note:Dr. David Hathaway, a member of the MSFC solar physics group for 29 years, transferred (7/9/2014) to NASA's Ames Research Center in California, where he retired in December, 2016. Dr. Hathaway's new email address is dave.hathaway @ comcast.net.

ssn_predict.gif (2208 bytes)
Click on image for larger version. Click here for an even larger version with three cycles
The current prediction for Sunspot Cycle 24 gives a smoothed sunspot number V2.0 maximum of about 101 in late 2013. The smoothed sunspot number V2.0 reached a peak of 116.4 in April 2014. This will probably become the official maximum. This second peak surpassed the level of the first peak (98.3 in March 2012). Many cycles are double peaked but this is the first in which the second peak in sunspot number was larger than the first. We are currently over seven years into Cycle 24. The current predicted and observed size makes this the smallest sunspot cycle since Cycle 14, which had a maximum smoothed sunspot number V2.0 of 107.2 in February of 1906.

Predicting the behavior of a sunspot cycle is fairly reliable once the cycle is well underway (about 3 years after the minimum in sunspot number occurs [see Hathaway, Wilson, and Reichmann Solar Physics; 151, 177 (1994)]). Prior to that time the predictions are less reliable but nonetheless equally as important. Planning for satellite orbits and space missions often require knowledge of solar activity levels years in advance.

A number of techniques are used to predict the amplitude of a cycle during the time near and before sunspot minimum. Relationships have been found between the size of the next cycle maximum and the length of the previous cycle, the level of activity at sunspot minimum, and the size of the previous cycle.

Among the most reliable techniques are those that use the measurements of changes in the Earth's magnetic field at, and before, sunspot minimum. These changes in the Earth's magnetic field are known to be caused by solar storms but the precise connections between them and future solar activity levels is still uncertain.

Of these "geomagnetic precursor" techniques three stand out. The earliest is from Ohl and Ohl [Solar-Terrestrial Predictions Proceedings, Vol. II. 258 (1979)] They found that the value of the geomagnetic aa index at its minimum was related to the sunspot number during the ensuing maximum. The primary disadvantage of this technique is that the minimum in the geomagnetic aa index often occurs slightly after sunspot minimum so the prediction isn't available until the sunspot cycle has started.

An alternative method is due to a process suggested by Joan Feynman. She separates the geomagnetic aa index into two components: one in phase with and proportional to the sunspot number, the other component is then the remaining signal. This remaining signal has, in the past, given good estimates of the sunspot numbers several years in advance. The maximum in this signal occurs near sunspot minimum and is proportional to the sunspot number during the following maximum. This method does allow for a prediction of the next sunspot maximum at the time of sunspot minimum.

A third method is due to Richard Thompson [Solar Physics 148, 383 (1993)]. He found a relationship between the number of days during a sunspot cycle in which the geomagnetic field was "disturbed" and the amplitude of the next sunspot maximum. His method has the advantage of giving a prediction for the size of the next sunspot maximum well before sunspot minimum.

We have suggested using the average of the predictions given by the Feynman-based method and by Thompson's method. [See Hathaway, Wilson, and Reichmann J. Geophys. Res. 104, 22,375 (1999)] However, both of these methods were impacted by the "Halloween Events" of October/November 2003 which were not reflected in the sunspot numbers. Both methods give larger than average amplitude to Cycle 24 while its delayed start and low minimum strongly suggest a much smaller cycle.

The smoothed aa index reached its minimum (a record low) of 8.4 in September of 2009. Using Ohl's method now indicates a maximum sunspot number V2.0 of 98 ± 25 for cycle 24. We then use the shape of the sunspot cycle as described by Hathaway, Wilson, and Reichmann [Solar Physics 151, 177 (1994)] and determine a starting time and amplitude for the cycle to produce a prediction of the monthly sunspot numbers through the next cycle. We find a maximum of about 101 in late 2013. The predicted numbers are available in a text file, as a GIF image, and as a pdf-file. As the cycle progresses, the prediction process switches over to giving more weight to the fitting of the monthly values to the cycle-shape function. At this phase of cycle 24 we now give 99% weight to the amplitude from curve-fitting technique of Hathaway, Wilson, and Reichmann Solar Physics  151, 177 (1994). That technique currently gives similar values to those of Ohl's method.

Another indicator of the level of solar activity is the flux of radio emission from the Sun at a wavelength of 10.7 cm (2.8 GHz frequency). This flux has been measured daily since 1947. It is an important indicator of solar activity because it tends to follow the changes in the solar ultraviolet that influence the Earth's upper atmosphere and ionosphere. Many models of the upper atmosphere use the 10.7 cm flux (F10.7) as input to determine atmospheric densities and satellite drag. F10.7 has been shown to follow the sunspot number quite closely and similar prediction techniques can be used. Our predictions for F10.7 are available in a text file, as a Jpeg image, and as a pdf-file. Current values for F10.7 can be found at: ftp://ftp.geolab.nrcan.gc.ca/data/solar_flux/daily_flux_values/fluxtable.txt.

 

Solar Cycle Predictions Web Links

Solar Influences Data Analysis Center

Royal Greenwich Observatory/USAF/NOAA Sunspot Record 1874-2012

Solar Cycle 24 Prediction Updated May 2009

Solar Cycle Prediction by Kristòf Petrovay

Web Links
NOAA's Space Weather Prediction Center - Today's Space Weather Updated Every 5-minutes
NOAA's Solar Data Services - Includes Irradiance, Emissions, Sunspot Data (also Ancient), Flares, Corona, and Plage
SDO Data - Latest Images from the Solar Dynamics Observatory
National Space Weather Program - The U.S. Government and Space Weather
High-Energy Astrophysics - MSFC's Imaging X-Ray Polarimetry Explorer (IXPE)
First Gov Image + NASA Privacy Policy and Important Notices
+ Visit Solar Terrestrial Probes Program
+ Visit Living With a Star Program
NASA Logo Image Author: Dr. David H. Hathaway, dave.hathaway @ comcast.net
Curator: Mitzi Adams, mitzi.adams @ nasa.gov
NASA Official: Dr. David McKenzie david.e.mckenzie @ nasa.gov
Last Updated: March 23, 2017